Final Report: Thermal Conductance of Solid-Liquid Interfaces

PDF Version Also Available for Download.

Description

Research supported by this grant has significantly advanced fundamental understanding of the thermal conductance of solid-liquid interfaces, and the thermal conductivity of nanofluids and nanoscale composite materials. • The thermal conductance of interfaces between carbon nanotubes and a surrounding matrix of organic molecules is exceptionally small and this small value of the interface conductance limits the enhancement in thermal conductivity that can be achieved by loading a fluid or a polymer with nanotubes. • The thermal conductance of interfaces between metal nanoparticles coated with hydrophilic surfactants and water is relatively high and surprisingly independent of the details of the chemical ... continued below

Physical Description

7 pages

Creation Information

Cahil, David, G. & Braun, Paul, V. May 31, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Research supported by this grant has significantly advanced fundamental understanding of the thermal conductance of solid-liquid interfaces, and the thermal conductivity of nanofluids and nanoscale composite materials. • The thermal conductance of interfaces between carbon nanotubes and a surrounding matrix of organic molecules is exceptionally small and this small value of the interface conductance limits the enhancement in thermal conductivity that can be achieved by loading a fluid or a polymer with nanotubes. • The thermal conductance of interfaces between metal nanoparticles coated with hydrophilic surfactants and water is relatively high and surprisingly independent of the details of the chemical structure of the surfactant. • We extended our experimental methods to enable studies of planar interfaces between surfactant-coated metals and water where the chemical functionalization can be varied between strongly hydrophobic and strongly hydrophilic. The thermal conductance of hydrophobic interfaces establishes an upper-limit of 0.25 nm on the thickness of the vapor-layer that is often proposed to exist at hydrophobic interfaces. • Our high-precision measurements of fluid suspensions show that the thermal conductivity of fluids is not significantly enhanced by loading with a small volume fraction of spherical nanoparticles. These experimental results directly contradict some of the anomalous results in the recent literature and also rule-out proposed mechanisms for the enhanced thermal conductivity of nanofluids that are based on modification of the fluid thermal conductivity by the coupling of fluid motion and the Brownian motion of the nanoparticles.

Physical Description

7 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/45938-FR.UIUC.A8525
  • Grant Number: FG02-01ER45938
  • DOI: 10.2172/885425 | External Link
  • Office of Scientific & Technical Information Report Number: 885425
  • Archival Resource Key: ark:/67531/metadc892815

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 31, 2006

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Nov. 4, 2016, 6:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cahil, David, G. & Braun, Paul, V. Final Report: Thermal Conductance of Solid-Liquid Interfaces, report, May 31, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc892815/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.