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Abstract

Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as

radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low

chemical doses (µg) and radiative doses (100 Bq) of isotope labeled compounds in animal

models and directly in humans for pharmaceutical, nutritional, or toxicological research.

Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high

precision after appropriate sample definition.

Introduction

Stable isotope ratio mass spectrometry (IRMS) identifies isotope dependent biological processes

(8 and references therein), measures elemental tracers (36), quantifies isotopically labeled

compounds (2), and has recently been adapted for tracing biological pathways using multiple

isotopic masses (38). Another form of IRMS was developed 25 years ago to directly count

individual ions of very rare isotopes. Acceleration of the ions to million electron volt energies

was the key to collisional destruction of any molecular isobars while supplying ions of sufficient

energy for identifying the resulting atomic ions by their characteristic interactions with nuclear

particle detectors. This accelerator mass spectrometry (AMS) is so sensitive that it is only used

for isotopes having concentrations of parts per billion to parts per quintillion in the isolated

elemental sample. The least abundant stable isotope, 3He, is present at 1.4 parts per million and

was initially discovered in a type of accelerator mass spectrometer, but the present form of AMS

was purposely developed to quantify long-lived radio-isotopes, particularly 14C, at natural

concentrations independently of their decay properties (30,1). This article presents the AMS

method and some of its benefits in preclinical applications, including how ADME and binding

studies are advanced by the high sensitivity and precision for very low levels of isotope-labeled

compounds.

AMS is now the essential technology for radiocarbon dates of small, precious, and/or especially

old archaeological or earth science samples (16). The natural 14C content in a mg of carbon in

equilibrium with the present biosphere, 105 amol, represents less than a decay per hour but is
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easily quantified to better than 1% precision in less than a minute with AMS. AMS can quantify



the 14C in a mg or less of carbon that may be as much as 50,000 years old, corresponding to <200

zeptomole (10-21 mol) of the isotope. An upper limit of approximately 100 fmol 14C per mg

carbon is set by counting limitations in the spectrometer. Radiocarbon dating drove the initial

development of AMS and still dominates the use of the approximately 100 instruments in the

world. The power of direct ion counting by AMS is even more important for longer lived

isotopes that cannot be effectively quantified by decay counting. Some of these, especially 41Ca,

also have significant biomedical applications (27). Isotopes with half-lives as short as 10 years

are efficiently quantified by AMS, with AMS quantitation of tritium providing a gain of about

1000 in sample size and speed of measurement (6). This quantitative sensitivity for fmol to zmol

was finally applied to biological research in 1990 (39) and became available over the past 15

years through some established AMS facilities, from several new commercial laboratories, from

in-house instruments, or from our NIH-funded Research Resource for Biomedical AMS. The

general concept of AMS is easiest described in terms of radiocarbon, as is done here in reference

to the specific spectrometers at LLNL.

AMS Measurement

AMS is an “isotope ratio” MS that quantifies only a fraction of the presented sample, requiring

the sample to be isotopically uniform over the period of measurement. A physically or

chemically defined biological sample is first homogenized by combustion to CO2 as is done with

other carbon IRMS measurements. Other isotope samples (Cl, Ca, etc.) may be homogenized in

an acid solution prior to purification and precipitation to a solid sample form. Some ion sources

accept the purified CO2 directly (29,3,34), but most facilities reduce the carbon sample to solid

fullerene on an iron catalyst to obtain the most intense, efficient, and sensitive ionization of the

sample (44,41,31). A cesium sputter ion source produces negative carbon ions from the

elemental or gaseous sample. The key to early application of AMS to carbon is the inability of

nitrogen to make a negative ion, effectively removing the atomic isobar of 14C without resort to

any spectrometric or chemical methods (6). Very few other isotopes share this fortuitous

circumstance: creative chemical preparation and ion identification schemes suppress their atomic

isobars. For example, CaF3
- ions are accelerated in measuring 41Ca, because the low production

of triple halide ions of potassium suppresses the isobar, 41K (15).
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The ions are selected by a simple dipole MS for mass 14 but a background 1010 greater than 14C

comes from mass 14 molecules such as 12CH2, 
13CH, Li2, etc., which are broken by a gas or thin

solid in a collision cell held at high positive potential. Collisional destruction of carbon hydrides

requires more than 2.5 MeV collision energies to destroy all molecules in a single event (22).

The highest efficiency for molecular destruction and positive carbon ion creation occurs around

6.5 MeV, producing a 70% yield of C4+ from C-. Our primary spectrometer can maintain the

collision cell at voltages up to 10MV. Insulation of this voltage requires a large surrounding

vessel of insulating SF6 and ancillary equipment that can cause a spectrometer to fill a building

(Figure 1). Newer, smaller spectrometers (Figure 2) use multiple ion collisions in a longer path

through gas to destroy hydride molecules at potentials of 200kV or more (37,17). The positive

ions created in the collision accelerate away from the high positive potential. Multiple magnetic

and/or electrostatic stages separate the hundreds of 14C ions per second from the tens of

microamps (1012 particles per second) of ions from the destroyed molecules. Finally, each ion is

slowed to rest in a detector. This slowing depends on the ion’s charge and mass in well defined

ways, making possible identification of each ion for counting. These ion counts are normalized

to a similarly accelerated beam of stable isotope ions from the sample (e.g. 13C), either in

sequence or simultaneously  (35). Samples of standard materials having well known isotope

concentrations are measured among the other samples for normalization.

The measured 14C/C ratio is often quoted in multiples of “Modern”, a unit representing the

natural level of biosphere 14C, had it not been disturbed by solar activity, fossil fuel burning, or

atmospheric nuclear weapons tests in past decades. Modern is equivalent to 97.8 amol 14C/ mg C

or 6.11 fCi 14C/mg C. The natural 14C level in living plants and animals remains in excellent

equilibrium with the atmospheric concentration (≈ 1.075 Modern in 2005) which is decreasing as

the atmospheric test-related 14C of the early 1960’s is dissolved into the oceans. The plasma of 53

women from various US locations averaged 1.086 ± 0.014 Modern in early 2004 (average ±

standard deviation, Bradley Keck, pers. commun.), in excellent agreement with northern

hemisphere tree ring measurements. (20). A measurement precision of 1% and the 1.3%

variability in a population means that 14C from labeled compounds can be quantified above

natural background concentrations to about 6.5 amol per mg carbon (95% confidence level). The

author has written a detailed discussion of the calculations for interpreting AMS 14C data and
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AMS for ADME Measurements

AMS’s high sensitivity and specificity provides pharmacokinetic profiles of small doses of

isotope labeled compounds in model animals or directly in humans, using only small samples of

excreta, fluid, or tissue. Any excess isotope above the well known and measurable pre-dose level

is attributable to the compound or its derivatives as long as accidental contamination of samples

is well controlled. The lifetime radiative dose of a volunteer’s AMS exposure is often only a

fraction of natural radiation levels, so that even children and special populations may be included

in clinical studies.

Less than 1 mg of carbon is needed for AMS measurement, and this is available from <20

microliters of plasma. This small volume is available from an indwelling catheter or minor blood

draw (e.g. finger prickor tail nick, depending on species) without disturbing the overall

physiology. Even absorption phases of ingested compounds are easily measured in a rapid series

of such draws. Some hydrophilic vitamins, like folate Figure 3A, reveal gastric absorption by

their rapid appearance in plasma (26), while lipophilic pro-vitamins like beta-carotene clearly

indicate the lipid intake due to lunch and dinner in Figure 3B (23). Absorption kinetics, whether

by diffusion or transport, are measurable without saturation effects, because the chemical dose is

comparable to physiological, environmental, or sub-pharmacological levels.

Long term kinetic studies with AMS can extend up to months after an exposure, given the high

sensitivity for the specific isotope label. Long term retention of a compound arises from specific

binding (42), lipid association (13), enterohepatic recirculation (26), or cellular uptake (4). This

retention represents a neutral incorporation, an indicator of continued therapeutic effect, or a

potential toxicity that requires further investigation. A cellularly retained compound is often

quantifiable in the leukocytes or erythrocytes of 100 microliters of blood, providing a minimally

invasive measure of the compound’s cellular kinetics, or the cellular lifetimes if the compound is

retained by incorporation. Compartmental models based on the high data density available from

AMS measurements of many small samples often suggest the physiological component driving

the long term kinetic profile (26). Retained fractions are measured precisely enough to set firm
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measurements.

This sensitivity is also used to drastically reduce the chemical and radiative doses used in both

preclinical animal studies and first-in-man tests of kinetic parameters at very low, presumably

non-toxic, doses with radiative doses of a few nanoCuries (a few hundred Bq). This application

of AMS has been dubbed “microdosing” (9,21) and is an important driver of AMS in drug

development programs. Low-dose PK with AMS is especially important in the study of,

nutritients (26), receptor mediated drugs that have effects at physiologic concentrations, in

determining systemic PK of localized exposures of poorly distributed compounds or from

implanted devices (24), and for human studies of environmental or non-therapeutic chemical

exposures (11,28,39).

In one study, a nucleoside analog was found to have equivalent kinetics in dog with a therapeutic

dose of 1 mg/kg as with a sub-therapeutic dose of 0.02 mg/kg (33). This nucleosidic antiviral can

be expected to have a retained cellular component (32). The plasma kinetics were unobtainable

past 12 hours using LC-MS/MS, but the important signature of retention is not yet apparent in

that plasma data. AMS obtained a precise measure of the long-term plasma concentration due the

compound’s return from cellular pools over a period of 3 days post dose using the lower

exposure (Figure 4). The LC-MS data for the parent compound remain lower (65-80%) than the

AMS data through their common range because unfractionated plasma was used for the AMS

measurements of the isotope label on the parent and all metabolic or bound fractions. LC-AMS

has been used to trace the 6 month kinetics of labeled beta-carotene and its metabolites in human

plasma, demonstrating that parent concentrations of a dose can also be quantified with AMS

sensitivity after suitable metabolite separations (23).

LC-AMS Metabolic Profiles

There are only a few human metabolites of beta-carotene, including the important vitamin A

products, but even this well-studied compound revealed unexpected, admittedly minor,

metabolites in LC-AMS separations (13). Isotope labeling is the preferred method for

discovering and quantifying the relative yields of metabolites in vivo. AMS produces
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with precise relative abundances without resorting to internal standards. Unlabeled standards

may be added to the sample prior to chromatography to aide in separations of very small samples

and/or to assist in determining times for fraction collection without affecting the quantitation.

Quantitative metabolic profiles in plasma or urine are obtained by comparing the isotopic

concentration of the injected sample with the sum of the eluted isotope profile to corect for any

analytical losses. Several different components add to the backgrounds of LC-AMS, and total

column loading should be held under 10 fmol total 14C (1 dpm) to avoid valve or column

contaminations in succeeding analyses (10). Simple fraction collection can be used to obtain the

kinetics of the separate species, if there are only a few established metabolites as with carotene

metabolism, but even low resolution (1 minute) fractions often reveal sufficient detail to

determine changes in major metabolites and the presence of previously unnoticed products.

Atrazine metabolites in human urine were quantified during and for several days after dermal

exposures (5). Metabolite profiles differed little in urines taken during the day-long dermal

exposure (Figure 5A), but by 5 days post after exposure, some preference toward doubly de-

alkylated metabolites was appearing in the high dosed subjects. The purpose of the study was to

determine the metabolite that is the best marker of human exposure to atrazine and concluded

that the didealkyl atrazine and its mercapturate were the suitable targets. Figure 5 normalizes the

chromatograms as percents of total elution signal, which represented 7.8 pg atrazine-equivalent

in the high dose trace, and only 2.6 pg in the low dose trace. Analytical error bars at <0.1% were

left off the Figure for clarity. Metabolites as low as 1% of the total can be measured. Clearly,

analytical sensitivity is sufficient for shorter fraction collections that would better distinguish the

specific mono- and di- dealkylated species, if desired. Unlabeled standard compounds were

available to identify labeled species through co-elution. There are active programs in ours and

other laboratories to directly link separatory instruments to AMS (25,7) so that continuous LC

analysis of metabolism will be possible for more general metabolic profiles.

AMS in binding

Human pharmacokinetics had been the single most difficult hurdle for candidate compounds that

survived through development up to first-in-man studies, but toxicology and efficacy have
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related to the tissue distribution and biomolecular targets of a dosed compound. Again, AMS

sensitivity and specificity for an isotopic label reveal distribution and binding in vivo without

saturation effects. The first uses of 14C-AMS in biochemistry quantified chemical genotoxicity by

measuring DNA adducted compounds in animals (39,14). The protein component of

genotoxicity was also assessed for benzene at environmental dose levels (45). Human studies of

low level adducts depended on surgical sample collection (40),), but human/rodent assays for

circulating protein adducts showed a direction for less invasive monitoring of compound

activation by human metabolism using only a few milliliters of blood (12). The sophistication of

protein separation prior to AMS quantitation determines the experimental resolution.

In one study, we found the murine distribution and targets of diisopropylfluorophosphate (DFP),

an anticholinesterase drug as well as an analog of more potent nerve agents. The PK of sub-toxic

doses of 14C-DFP (1 µg/kg, PO) in plasma, RBC, and brain tissue revealed a very rapid clearance

of the parent and metabolites, followed by the slow loss of the bound fractions (42). The plasma-

linked 14C signal had a mean life in good agreement with the lifetime of plasma proteins in mice.

RBC-bound DFP was also consistent with the longer expected RBC lifetime. The brain-bound

isotope signal was consistent with little or no target turnover during the 1 week after dosing. We

expected that a number of plasma esterases/hydrolases might be targeted by the very active

fluorine in DFP. We separated plasma proteins on isoelectric focusing (IEF) strips at various

times post dose. We were surprised to find only one major target and one minor group of

proteins that were bound to DFP at both 1 and 48 hours post dose, although the major target was

different at the two times. Figure 6A shows the AMS quantitation of a sample of mouse plasma

from one hour after DFP exposure spread on an IEF strip from pH 4-9. Figure 6B shows a

background-corrected AMS quantitation of the SDS-PAGE separation of molecular weights for

the piece of the IEF strip from 4.5 to 4.8. The majority of the 14C moved with the dye front to

below 10 kDa molecular weight. Little or no signal is seen below that broad peak. We suspect

that this represents a complex of DFP with glutathione during the rapid detoxification in the first

hour after exposure. The two peaks at 80 and 120 kDa are consistent with the pI and weights of

the dimer and trimer form of paraoxonase, with an insignificant suggestion of the monomer at a

1 attomole level (18) Our attributions for these peaks have not yet been confirmed.
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AMS quantification of separated biomolecular species provides high sensitivity and specificity

for following the kinetics and dynamics of drug candidates at very low chemical or radiative

exposure, opening the way to studies of: extremely potent receptor binding therapeutics, non-

toxic doses of candidate compounds for early first-in-man tests, and human metabolism and

protein binding using minimally invasive blood or needle biopsy draws. The high efficiency of

AMS means that highly specific rare isotopes, such as 14C, can be used safely and efficiently in

preclinical trials, including children, target populations, and women of child-bearing age. AMS is

merely a quantitative tool, however, and the effectiveness of its use depends on the careful

biological and chemical definition of the sample being quantified. If AMS were only a much

more efficient way of measuring 14C, its value might lie in reduction of radioactive waste,

lessening of labeling requirements in chemical synthesis, or lower radiative exposure to

experimenters and volunteers. These are indeed benefits of AMS quantitation, but the real power

of the method for drug discovery lies in the human data that it empowers early in a drug

development program. It is a safe tool to get data from populations that are of most concern in

dosing, efficacy, and toxicity.
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Figures

Figure 1. The 10 MV AMS at LLNL has a very high throughput and precision for 14C analyses

but is also a versatile spectrometer for quantifying specific isotopes from tritium to plutonium.

Figure 2. The 1 MV spectrometer at LLNL is operated at 0.5 MV for biomedical 14C

measurements and is being modified for higher throughput of tritium samples.

Figure 3.A.) The absorption phase of hydrophilic folate pharmacokinetics in plasma is shown

for 4 human volunteers after ingestion of a 35 µg, 100 nCi dose of 4C-folate. B.) The slower and

more complex absorption phase of lipophilic beta-carotene is seen in the plasma of two human

volunteers after a 1 mg, 200 nCi ingested dose.

Figure 4. Plasma kinetics for the 14C label of an adenosine analog show similar rapid clearance

followed by a slower clearance at a mean rate of 0.05/hr for oral exposures at a pharmacological

dose and at 2% that dose. LC-MS measurement of the parent compound at the higher dose was

undetermined past 12 hr.

Figure 5. Human metabolites of dermally applied atrazine are shown as HPLC traces of urine

expressed as percentage of eluted label for A..)4-8 hours post dose and B.) 5 days post dose at

two doses differing by a factor of 10. Both doses have a significant, previously unknown, polar

metabolite (i.) at 11 minutes, as well as primary metabolites of di-dealkyl atrazine and their

mercapturates (ii.). The low dose may favor more mono-dealkyl atrazine metabolites (iii.). Both

show atrazine mercapturate (iv.).

Figure 6. Mouse plasma proteins were separated on an isoelectric focusing strip(A.) from a

sample taken 1 hour after dosing with DFP. The peak of bound label at 4.7 pI was further

separated for molecular weight on PAGE(B) to find that the only large protein binding was

consistent with the dimer and trimer of paraoxonase. The sub-10 kDa signal is attributed to

glutathione detoxification of the reactive compound.
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Figure 4
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Figure 5

20

0 10 20 30 40
0

5

10

15

20

HPLC Elution Time  ( min. ) 

F
ra

ct
io

n 
C

on
te

nt
 (

 %
 T

ot
al

 )
 

17% 

28% 

1.98 mg 
0.17 mg

Dermal Atrazine Dose  

39% 

20% 

i. ii. iii. iv. 

5

10

15

20

A.) 4-8 hr 

B.) 6 days 

22% 

26% 

5.2% 

7.5% 



Figure 6
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