SOME NATURAL CONDUIT ANALOGUES FOR POTENTIAL IGNEOUS ACTIVITY AT YUCCA MOUNTAIN

PDF Version Also Available for Download.

Description

Eruptive conduit geometry has direct relation to number of waste packages that would be damaged if a new volcano were to form at the proposed Yucca Mountain radioactive waste repository, and therefore is a key factor in predicting the consequences of such an eruption. Current risk calculations treat conduits as having circular plan view and range from a few meters to 150 m diameter at repository depths ({approx}300 m). We present new observations of shallow basaltic plumbing at analog sites aimed at testing these parameter values. East Grants Ridge. NM, is a remnant of a {approx}2.6 Ma alkali basaltic volcano ... continued below

Creation Information

Krier, D.J.; Keating, G.N. & Valentine, G.A. August 26, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Eruptive conduit geometry has direct relation to number of waste packages that would be damaged if a new volcano were to form at the proposed Yucca Mountain radioactive waste repository, and therefore is a key factor in predicting the consequences of such an eruption. Current risk calculations treat conduits as having circular plan view and range from a few meters to 150 m diameter at repository depths ({approx}300 m). We present new observations of shallow basaltic plumbing at analog sites aimed at testing these parameter values. East Grants Ridge. NM, is a remnant of a {approx}2.6 Ma alkali basaltic volcano with a chain of 2-3 vents that fed {approx}10-km long lava flows. The south side of the ridge exposes a plug of vertically jointed, dense basalt that intruded rhyolitic tuffs. The plug is exposed vertically for {approx}125 m, including 40 m beneath the paleosurface, and has a relatively constant width of {approx}135 m with no indication of downward narrowing. The size of the plug in the third dimension is not well known but could extend laterally up to {approx}1.5 km beneath the chain of vents. Paiute Ridge, NV, is an 8.6 Ma alkali basalt intrusion into Paleozoic carbonate and shale and Miocene silicic tuffs and includes extrusive equivalents. Dikes, small sills and lopoliths, scoria, and flows are exposed in a 2 km-wide graben. Depth of intrusion has been estimated at 100-250 m beneath the paleosurface. Dikes range from 3-20 m in width and produced limited contact vitrophyre in the host tuff. At least one sub-volcanic neck is preserved. The top of the plug is {approx}27 m lower than the base of related basalt flows 1 km distant. This neck is irregularly shaped by intersection of feeder dikes and has a sheath of mixed basaltic magma and host tuff (with both breccia and fluidal textures). The basalt interior of the plug is {approx}100 m x 70 m in map view but inclusion of the mixed zone increases this to {approx}220 m x 110 m. Basalt Ridge, NV, contains two remnants (9.1 Ma; 8.8 Ma) of basalt dikes, vent, spatter, scoria, and flow facies, with exposures to {approx}270 m beneath the paleosurface. Basalt Ridge ''East'' (BRE) contains breccias, agglutinates, and flows capping a linear ridge for 1,600 m; feeder dikes extend laterally beyond the eruptive products. The adjacent canyon reveals gradual decrease in feeder thickness from an 80-100 m-wide vent to a 40 m-wide zone of dikes plus host tuff (35 m beneath paleosurface), to 1-2 dikes in a 4 m-wide zone (270 m beneath paleosurface). BRE reveals no ''conduit'' extending to significant depth. Instead, multiple thin dikes rise vertically in non-welded and welded tuffs at repository depths. The above observations are roughly consistent with the range of conduit diameters currently used in consequence calculations, although they may support an extension of the size range so that some large diameters are accounted for at lower probabilities.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • DOI: 10.2172/884939 | External Link
  • Office of Scientific & Technical Information Report Number: 884939
  • Archival Resource Key: ark:/67531/metadc892798

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 26, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 8, 2016, 11:10 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Krier, D.J.; Keating, G.N. & Valentine, G.A. SOME NATURAL CONDUIT ANALOGUES FOR POTENTIAL IGNEOUS ACTIVITY AT YUCCA MOUNTAIN, report, August 26, 2005; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc892798/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.