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I – Introduction

In today’s world, the need for computing power is becoming more pressing daily.  Our need 
to process, analyze, and store data is quickly exceeding the capabilities of small self-contained 
serial machines, such as the modern desktop PC.  Initially, this gap was filled by the creation of 
supercomputers:  large-scale self-contained parallel machines.  However, current markets, as 
well as the costs to develop and maintain such machines, are quickly making such machines a 
rarity, used only in highly specialized environments.  A third type of machine exists, however.  
This relatively new type of machine, known as a cluster, is built from common, and often 
inexpensive, commodity self-contained desktop machines.  But how well do these clustered 
machines work?

There have been many attempts to quantify the performance of clustered computers.  One 
approach, Queueing Network Modeling (QNM), appears to be a potentially useful and rarely 
tried method of modeling such systems.  QNM, which has its beginnings in the modeling of 
traffic patterns, has expanded, and is now used to model everything from CPU and disk services, 
to computer systems, to service rates in store checkout lines.  This history of successful usage, as 
well as the correspondence of QNM components to commodity clusters, suggests that QNM can 
be a useful tool for both the cluster designer, interested in the best value for the cost, and the user 
of existing machines, interested in performance rates and time-to-solution.

So, what is QNM?  Queueing Network Modeling is an approach to computer system 
modeling where the computer is represented as a network of queues and evaluated analytically.1  
How does this correspond to clusters?  There is a neat one-to-one relationship between the 
components of a QNM model and a cluster.  For example:  A cluster is made from a combination 
of computational nodes and network switches.  Both of these fit nicely with the QNM 
descriptions of service centers (delay, queueing, and load-dependent).  Other examples include 
relationships between different classes of customers in QNM and different types of messages 
passed on clustered systems, and the obvious relationship between the QNM model queues and 
message queueing in switches and network cards.  Even the parameterization of QNM 
components lends itself well to cluster modeling.  Numbers of service centers (computational 
nodes and switches) is generally well known for existing systems, and can be estimated for 
potential systems.  Number of customers in the system can be estimated based on application call 
traces or profiles.  Timing rates and service demands, too, can be estimated based on device 
specifications, or through application tracing or profiling.  Typical results reported include 
throughputs, queue lengths, and response times, all of which are important to determining how 
well a system is utilized.

In this research, QNM is applied to the Keck Cluster as a strong scaling problem.  Strong 
scaling is where the size of the problem to be solved remains constant even as the number of 
processors allocated to the solution increases.  QNM could also be applied in a weak scaling 

  
1 [28]
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manner, meaning the problem size increases as the number of allocated processors increases, but 
this application is not investigated here.

Initial research was conducted, and methodology refined, at Lawrence Livermore National 
Laboratory (LLNL) on MCR.2 After refinement, methods developed at LLNL were applied to 
the Keck Cluster at the University of San Francisco (USF).

The rest of this paper is organized into the following sections:

I. Introduction
This introduction.

II. Summary of Work Performed
Summary of work performed for this research, both historical and recent.

III. Description of Software and Hardware Products
Description of the various components used to create, test, and validate the QNM 
model.

IV. Description of Methodology
A description of the methods and methodologies used to create, test, and validate the 
QNM model.

V. Analysis and Report of Findings
An analysis of collected data and report of the findings.

VI. Future Research
Areas of future research.

VII. Conclusion
Conclusions and discussion.

VIII. Appendices
Source code and other supporting documents.

  
2 Development of methods done under Research Subcontract B546340 for Queuing Network Models of 
Performance of High End Computing Systems.
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II – Summary of Work Performed

• Downloaded, installed, compiled, and ran NAS Parallel Benchmarks on the Keck Cluster 
at USF.

o Source and script files modified to meet specific needs of Keck Cluster.
o Script files created to batch execute benchmarks.

• Downloaded, installed, compiled, and linked mpiP with NAS-PB at USF.
o Linkage for C and Fortran MPI compilers modified to include mpiP libraries.

• Executed NAS-PB with mpiP on Keck Cluster.
o Class ranges A – D.
o Processor ranges 1 – 64.
o Cyclic and linear allocations.

• Modified and populated Excel spreadsheet to hold resultant values and calculate model 
inputs.

o Performs error analysis and data validation.
o Graphically displays results.
o Initially developed as part of the LLNL Research Subcontract.

• Modified QNM software, which was developed as part of the LLNL Research 
Subcontract.

o Software modified to include single class load dependent service center analysis.
o Development near completion for multiple class load dependent service center 

analysis.

• Modeled Keck Cluster using modified QNM software, and used benchmarks and 
machine models from LLNL to help refine modeling technique.

o Used similar techniques to Keck Cluster modeling.

• Used software, developed as part of the LLNL Research Subcontract, to create input files 
for QNM modeling program.

o Fed input file to solver using indirection.

• Used software, as part of the LLNL Research Subcontract, to extract values from mpiP 
and NAS-PB result files for Excel spreadsheet, and applied to Keck Cluster data.

o Delimited text file.

• Created a research bibliography, in conjunction with LLNL Research Subcontract.
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III – Description of Software and Hardware Products

inMaker
A simple Java program, developed as part of the LLNL Research Subcontract, which, when 

given parameters for the QNM solversolver, will create as output a file that can be used as input 
for the QNM solver.

Keck Cluster
The University of San Francisco Department of Computer Science’s supercomputer.  As 

described on its website, the Keck Cluster is “… a 64 node Beowulf cluster … [containing] Dual 
Pentium III 1GHz CPUs, 1GB RAM, [and a] Myrinet Network card … connected by … a 2Gbps 
Myrinet network used exclusively for communication between MPI programs.”3

The default MPI environment on the Keck Cluster is Myrinet’s MPICH-GM v. 1.2.4..8a, 
which was used for all compilation, linkage, and execution.4

The Keck Cluster is a login/logout system, has no batch execution control, and runs RedHat 
Linux 8.0.

MCR
A multiple node supercomputer located at Lawrence Livermore National Laboratory.  MCR 

stands for Multiprogrammatic Capability Cluster.

MCR is “a large (11.2 TF) tightly coupled Linux cluster … has 1,152 nodes, each with two 
2.4GHz Pentium 4 Xeon processors and 4GB of memory … runs the LLNL CHAOS software … 
which incorporates … Red Hat Linux.”5

Compilation, linkage, and execution performed on MCR using Intel compilers v. 8.1.

MCR uses a Quadrics QsNet Elan 3 interconnect, which delivers high bandwidth (>300 
MB/s) with low latency (<5.0 μs).6

  
3 Keck Cluster [USF-CS].  27 Jul 2004.  U. of San Francisco.  8 Aug 2005.  <http://kc.cs.usfca.edu/index.shtml>.
4 Keck Cluster [USF-CS].  25 Jun 2004.  U. of San Francisco.  8 Aug 2005.  <http://kc.cs.usfca.edu/software.shtml>.
5 M&IC Capability Cluster (MCR).  6 Aug 2004.  Lawrence Livermore National Laboratory.  8 Aug 2005.  
<http://www.llnl.gov/linux/mcr/mcr.html>.
6 M&IC Capability Cluster (MCR).  29 Aug, 2002.  Lawrence Livermaore National Laboratory.  12 Aug, 2005.  
<http://www.llnl.gov/linux/mcr/background/mcr_background.html#sec212>.
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mpiP
As described in its documentation:  “mpiP is a lightweight profiling library for MPI 

applications.”7 It was developed by LLNL staff, and is a publicly available resource.

MpiP replaces an application’s linkage to MPI programs, thus allowing it to collect 
information concerning a variety of MPI calls. After calling, the mpiP routines collect some 
system state data, and then call the related MPI routines. It can be linked at run-time, thus 
avoiding the need to recompile.  Since statistics are generated only at the end of execution, mpiP 
has very low overhead.

mpiPfilter
A simple Java program, developed as part of the LLNL Research Subcontract, that filters 

the output files from mpiP and NAS-PB  and creates a text file usable as input for the NBP 
Spreadsheet .

NAS Parallel Benchmarks
The Numerical Aerodynamic Simulation is described as:  “[A] small set of programs 

designed to help evaluate the performance of parallel supercomputers. The benchmarks, which 
are derived from computational fluid dynamics (CFD) applications, consist of five kernels and 
three pseudo-applications.”8

The flavor used to benchmark the Keck Cluster is NPB 2.4.

Developed at NASA’s Ames Research center, the benchmarks consist of two major 
components:  five parallel kernel benchmarks and three simulated application benchmarks,9
described as follows:

Kernel Benchmarks:

EP Embarrassingly Parallel:  Compute bound with virtually no interprocessor 
communication.

MG Multigrid:  Tests both short and long distance communication.

CG Conjugate Gradient:  Tests irregular long distance communication.

FT Fast Fourier Transform:  Rigorous long-distance communication test.

  
7 mpiP:  Lighweight, Scalable MPI Profiling.  29 Apr 2005.  Lawrence Livermore National Laboratory.  8 Aug 
2005.  <http://www.llnl.gov/CASC/mpip/>.
8 The NAS Parallel Benchmarks.  13 Oct 2004.  National Aeronautics and Space Administration Advanced 
Supercomputing Division.  8 Aug 2005.  <http://www.nas.nasa.gov/Software/NPB/>.
9 [2]
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IS Integer sort:  Tests both computation speed and communication performance.

Simulated Applications:

LU Regular-sparse, block lower and upper triangular system solution.  Limited 
parallelism.

SP Pentadiagional Solver.

BT Block tridiagonal solver.

The benchmarks are configurable, at compile time, for multiple machine and class sizes.  
Class groups (A, B, C, and D) provide increasingly larger problems used to test MPI.  Certain 
tests have restrictions on the problem sizes (BT and SP must be n2, CG, FT, IS, LU and MG
must be 2n, where n is the number of processors.  There are no size restrictions for EP.), For 
simplicity, the test sizes on the Keck cluster were restricted to 22n.

NPB Spreadsheet
The NPB spreadsheet, developed as part of the LLNL Research Subcontract, is designed to 

receive, as input, select values from the NAS suite and mpiP files, as generated by mpiPfilter.  It 
then uses these values to calculate model inputs for the QNM SolverSolver.

The spreadsheet also performs error analysis between modeled and measured values, and 
graphically displays the results with a breakdown of the components that were used to make the 
model, and their resultant model inputs.

It also graphically compares the components of the model’s wall clock time for the 
application to the measured components of the wall clock time.

QNM Solver
The QNM (Queueing Network Model) Solver is a Java program, ported from algorithms and 

FORTRAN code in [28], and developed as part of the LLNL Research Subcontract.  Using input 
files generated by inMaker, based on values from the NPB spreadsheet, gathered from mpiP and 
NAS PB suite files, the program models the system as a queueing network.  The solver performs 
single and multiple class mean value analysis, single class load dependent service center 
modeling, and is capable of batch execution.

The output of the solver is entered into the NPB spreadsheet to complete the modeled vs. 
measured validations.
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IV – Description of Methodology

Collection and Analysis Procedure
Using procedures refined using MCR at LLNL; the following methods were applied to the 

collection and analyzing of data from the Keck Cluster:

• The NAS Parallel benchmarks were downloaded from the NAS website.10

• Configuration files for the NAS PB were modified for the Keck Cluster.  Minor 
errors in benchmark code were corrected.

• Downloaded, compiled, and installed mpiP from LLNL website.11

• The NAS PB executables were compiled using mpiP linkage.

• Shell scripts were written for each suite of NAS PB tests to provide proper 
environment setup and to ease execution.

• The shell scripts were executed, and the resultant data files were captured and stored 
in a directory.

• The mpiPfilter program was run on the data. The resultant output files were also 
stored and imported into the NPB spreadsheet.

• Calculations in the NPB spreadsheet produced inputs for the QNM solver.

• QNM solver input files were created using inMaker, and fed to the solver using 
single class MVA batch mode.

• Outputs from the QNM solver were copied into the NBP spreadsheet, which 
performed error analysis on the modeled vs. measured inputs and graphically 
displayed the results.

• The NPB spreadsheet was then inspected for continuity, alignment of data, error, and 
other anomalies by the researcher.

• As necessary, the model was refined and the QNM solver was rerun on the data.

  
10 http://www.nas.nasa.gov/Software/NPB/
11 http://www.llnl.gov/CASC/mpip/
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QNM Solver Input Calculation
The NPB spreadsheet, in addition to providing a common location for collected data, assists 

in automating the process of producing input values for the QNM solver.  These values are 
determined as follows:

• Number of Customers (N):  The number of customers is equal to the number of 
processors (P) allocated to the problem.  This models a system in which P messages 
are simultaneously circulated within the system, one message for each processor.

PN =

• Number of Centers (K): This is equal to the number of processors plus two.  This 
allows for modeling the network switch and processor computation as separate 
centers, and eases input creation.

2+= PK

• Switch Delay (D0):  Switch delay models the network interconnect and is determined
by dividing average message size (L) by bandwidth (BW) and adding network latency
(Lat). It represents the average network transfer time for a message.

Lat
BW

LD +=0

• CPU Service Demand (Dk):  This value represents the amount of time per message 
spent by each processor when servicing MPI calls, but excludes time spent waiting.  It 
equals the MPI time minus the MPI wait time, all divided by the product of the 
number of processors and number of messages (M).

MP
WaitMPITimeMPIDk •

−
=

__

• Computation Delay (DP+1):  The amount of non-overlapped per message computation 
between MPI calls.  It is the difference between application time and MPI time, all 
divided by M. It represents an aggregate amount of computation across all 
processors.

M
TimeMPITimeAppDP

__
1

−
=+

NPB Spreadsheet Spreadsheet Error Analysis and Display
As described below, the NPB spreadsheet performs error analysis on modeled vs. measured 

values for the QNM method. Application times and graphical views are also interpreted visually, 
in graphs.
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Validation Views

Application (Wall Clock) Time

• Observed Application Time (AT*):  
P

TimeAppAT _* =

• Model Application Time (AT):  
P

MRAT •
=

• Relative Error (EAT):   *

*

AT
ATATEAT

−
=

MPI Active Time

• Observed MPI Time (MT*):  
P

TimeMPIMT _* =

• Model Application Time (MT):  ( )
P

MRMRMT k
•

+•= 0

• Relative Error (EMT):   *

*

MT
MTMTEMT

−
=

MPI Wait Time

• Observed Application Time (WT*):  
P

WaitMPIWT _* =

• Model Application Time (WT):  ( )
P

MRDRMWT KK
•

+−= 0

• Relative Error (EWT):   *

*

WT
WTWTEWT

−
=

Throughput

• Observed Application Time (X*):  *
*

AT
MX =

• Model Application Time (X):  X

• Relative Error (EX):   *

*

X
XXEX

−
=

Graphical Views

Measured Component Time
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Components of measured wall clock time.

• MPI Wait:  Measured value for the aggregate time spent waiting on MPI calls.
• MPI Active:  Measured value for the aggregate time spent actively on MPI calls.

Also known as MPI service time.
• Computation:  Measured value for the aggregate time spent in non-overlapped 

computation (not processing MPI calls or waiting on them).

Modeled Component Time
Components of modeled wall clock time.

• Switch Delay:  Calculated amount of time it takes the network switch to process all 
the messages. Same as aggregate message transfer time for all messages.

MRySwitchDela •= 0

• MPI Contention:  Calculated amount of aggregate time MPI waits for servicing of all 
messages..

( ) PMDRionMPIContent kk •−=

• MPI Active:  Calculated amount of aggregate time MPI actively services messages.

PMDMPIActive k ••=

• Compute Time:  Calculated amount of aggregate time spent on non-overlapped
computation, not related to MPI.

MMsgComputeeComputeTim •=
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V – Analysis and Report of Findings

CG A Analysis

Number of Processors vs. Application Time
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Figure 1 – CG A Wall Clock Times

As seen in Figure 1, there is good correlation between measured and modeled values for 
application execution time, or wall clock time (WCT).  All relative error values fall within the 
30% tolerance typical typical of QNM models, and most fall within 10%.  The only value to fall 
outside 10% is the result for 16 processors, with a relative error of 10.6%
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Modeled vs. Measured Component Times
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Figure 2 – CG A Component Values

Again, good correlation is seen between measured and modeled values.  Also, again, 
discrepancies are noted in the 16 processor model, showing that refinemente of switch delay 
ant/or MPI wait time is in order.
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CG B Analysis

Number of Processors vs. Application Time
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Figure 3 – CG B Wall Clock Times

Good correlation between measured and modeled values.  All values fall within 10% except 
for 64 processors, which falls at 11.35%
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Modeled vs. Measured Component Times
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Figure 4 – CG B Component Values

Good relationship again noted for all values except 64 processors, which contains 
unexpectedinappropriate values for either MPI Wait or switch delay, and thus a need for further 
refinement of these values.
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CG C Analysis

Number of Processors vs. Application Time
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Figure 5 – CG C Wall Clock Times

Excellent relationship between measured and modeled values, with all values falling within 
10% tolerance.
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Modeled vs. Measured Component Times
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Figure 6 – CG C Component Values

Good relationship between measured and modeled values.  Sixty-four processor values again 
off for MPI Wait and switch delay.
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CG D Analysis

Number of Processors vs. Application Time
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Figure 7 – CG D Wall Clock Times

For the single collected data point, there is an excellent relationship between measured and
modeled values, falling at less than 10% difference.
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Modeled vs. Measured Component Times
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Figure 7 – CG D Component Values

Good relationship seen between measured and modeled data, however, again, the difference 
between measured and modeled MPI Wait and switch delay is notable.

Keck Cluster Analysis and Aggregate Results

As seen by the above graphs, not only does the QNM method function well within regard to 
the Keck Cluster, but the cluster also lends itself well to QNM.  The comparison between 
modeled values and measured runt imes for the entire Keck Cluster are very impressive,and the 
results are highly usable, not only forin determining how well the cluster functions, but also for 
predicting future performance of applications on the cluster.

Analysis of the Keck cluster was not without problems, however.  As is typical of any 
machine this size, numerous issues arose during analysis that had to be resolved, either by 
solving the problem, or finding a suitable workaround.  Below, I outline some of the major 
difficulties in the Keck Cluster analysis, in order of their significance:

• Size:  The most significant problem with the Keck Cluster is its relatively small size, 
compared to many other supercomputers.  The small size makes it difficult to 
establish good baseline readings for the cluster, as many of the behaviors exhibited by 



19

large MPI programs are not visible. For example:  Typically, MPI programs reach a 
point where adding more processors to the solution actually increases time to 
solution.  This ‘U’ shape is not visible on Keck Cluster models, as the cluster does not 
have enough nodes available to create a processing group this large. The only 
solution to this would be to increase the number of nodes available to the machine.  
The financial outlook for such an endeavor is bleak, however, and thus highly 
unlikely.  The Keck Cluster is not intended to be a large, production supercomputer, 
but rather a small academic computer for personal, academic research, and will most 
likely remain so for the foreseeable future.

• Scheduling:  The Keck Cluster uses a login/logout style allocation system.  This 
leaves the system with a large amount of wasted compute time, as nodes are often 
unallocated, or even worse, allocated and idle.  In short, the Keck Cluster is highly 
inefficient in the use of compute time.  The addition of a batch scheduling system, 
with limited interactive login restricted to short batch jobs and small job debugging, 
would eliminate this waste and increase system efficiency.

• Prioritization:  The Keck Cluster is non-prioritized.  It makes no distinction between 
users; all are treated equally.  This makes it possible for non-Computer Science 
departments to utilize large amounts of the cluster’s resources, often leaving little or 
no compute power available for CS use.  It also means that non-academic pursuits can 
choke out vital academic pursuits in the same manner.  Implementation of a job 
prioritization policy would alleviate this.  Possibilities include:  faculty over students, 
CS over non-CS, and active class work over active research over non-academic work.  
To prevent job starvation, priority could be gradually increased over time for queued 
jobs, insuring they would eventually run.

• Stability: Any clustered supercomputer is, by its nature, an unstable system.  But 
because of its relatively small size, stability on the Keck Cluster is a much larger 
problem.  Because the cluster only contains 64 nodes with 128 processors total, for 
each node taken down for problems, approximately 1.6% of the total compute power 
is removed from the system.  Thus, if the node has seven nodes down on average, 
more than 10% of the system is unusable at any given time due to instability.  At the 
time of this writing, eight nodes of the cluster are out of service, for a compute loss of 
16 processors and 12.5%.12  Discussions with the system administrator indicate this 
instability is a product of the cluster’s operating system.  There are at least two 
possible solutions:  locate and correct the unstable elements of the current operating 
system, or replace the operating system with one designed for supercomputing and 
known to be reliable.

• System Administration:  The Keck Cluster lacks a dedicated system administration, 
instead relying on the CS department’s general system administration.  This means 
that the system administrator often lacks the resources and/or time to effectively 
repair malfunctions in the cluster.  This results in further instability of the system, and 

  
12 Keck Cluster nodes:  9, 25, 27, 28, 45, 46, 62, and 64.
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further increases the effects noted above.  Solutions include dedicated administration 
for the Keck Cluster.  While hiring a full-time professional staff member to maintain 
the cluster is economically unfeasible, these services could be performed by a part-
time student assistant, and would be an enormous learning opportunity, as well as a 
strong professional reference.

• Software:  Adapting mpiP and default Keck Cluster software packages to work 
together was a bit challenging, as the Keck documentation was difficult to find, less 
than adequate, and hard to decipher.  Addition of well written tutorials covering 
installed software on the cluster would be a useful addition.  This would also make an 
excellent opportunity for a part-time student assistant.
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VI – Future Research

Following are areas of continuing interest, and candidates for future research:

• Complete analysis of FT benchmarks:  Complete the determination of the parameters 
for the FT set of benchmarks and model the results.  This will allow modeling of 
programs where MPI_Wait() is not called, but MPI spends time watingidle, none the 
less.

• Analyze, model, and predict BT, EP, IS, LU, MG, and SP benchmarks:  Only one 
quarter of available data collected has been analyzed.  Use the remaining data, based 
on runs with a small number of processorsshort run analysis, to perform prediction to 
large-scale machine usage.  This gives strong credence to model accuracy.

• Analyze benchmark stability over numerous runs:  Early analysis shows a large 
variability in different runs of the same class size and number of processors.  Reason 
dictates that there should be no (or very little) variability, and graphical plots of 
various measurement values should be relativelypresent graphically as flat.  
Understanding this phenomenon would assist in creating more accurate models.

• Predict performance of a large, unknown machine based on small-run data and 
hardware information:  Using data collected from small runs of a problem (small 
numbers of processors) and technical information about the hardware configuration, 
predict the performance of the machine on the same problem on a large scale.  This 
again assists in validating the model.

• Predict performance of a machine yet-to-be-built:  Use projected data on software and 
hardware performance to model a machine that is not yet operational.  This is the 
ultimate test of model validity.

• Use QNM to predict performance for the weak scaling problem:  Using a weakly 
scaled problem set, collect data on machine performance and analyze the 
effectiveness of QNM to predict weakly scaled problems.

• Model the computing power of the entire internet:  Do a little research, make a good 
guess, and try to model the total computing power of every machine connected to the 
internet.  A bit fanciful, maybe, but most likely very interesting.
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VII – Conclusion

Based on the results above for the Keck Cluster, Queueing Network Modeling is an excellent 
predictor of machine performance, providing results that are were highly accurate, and often 
providing insight into the operation of the cluster.surprising.  Despite its flaws, the Keck Cluster 
provides a respectable test platform, and produces highly predictable results with minimal extra 
work or overhead.  Preliminary results from FT run analysis indicates results just as promising.

While the model does seem to currently have deficiencies when modeling some of the 
individual components, such as MPI Wait, that make up an MPI program, the results from wall 
clock time analysis, which are by far more interesting and useful, are well within the model’s 
usual 30% error performance, and most are within scientific tolerance of 10%.  Thus QNM 
provides meaningful results, and is useful for determining the approximate run times for large-
scale, time critical applications. QNM is one solution to the strong scaling problem described in 
the introduction.

Another potential application of QNM would be job scheduling in large-scale batch systems.  
Using QNM run time approximations, the scheduler would be able to schedule more jobs, 
obtaining a higher system throughput, shorter time to solution, and better use of compute time.  It 
could also be used to assist in job priority determination, to keep as many nodes in a system 
active as possible.

The operating system, network traffic and resource usage by other jobs, and similar noise do 
have the potential to create inaccuracies in measured system data, and thus can create inaccurate 
models.  Preliminary run stability analysis shows a large amount of variability in measured 
values for small benchmark runs.  However, it appears that QNM tends to flatten this 
variabilitythese differences, resulting in models that, graphically, appear much straighter and 
smoother.more horizontal.  Reasons for this are currently under investigation, and the use of data 
averaged from multiple short benchmarks to filter noise is being explored.

In summary, QNM shows good potential for machine performance prediction.  It gives much 
better accuracy than often seen in other applications, is easy to calculate, and requires little data 
collection.  The academic, commercial, and administrative potential for QNM is large, and if 
current trends hold, will continue to grow.  Also, since QNM is little researched in regard to 
computer performance modeling, the research potential for QNM is tremendous.
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Appendix B –NPB Spreadsheets
Measured and modeled values with analysis to support graphical data presented in Section V.

CG A

Label Symbol Derivation Unit Type 1 4 16 64

Number of CPUs P - CPU IO
1 4 16 64

Application - - Text I
CG A CG A CG A CG A

Machine - - Text I
kc kc kc kc

Run Date - - Date I
6/16/05 6/16/05 6/16/05 6/16/05

mpiP Collector 
PID - - # I

1349 5060 9883 15026

Aggregate 
Application Time App_Time - s I

35.5E+0 49.7E+0 65.2E+0 101.0E+0

Aggregate MPI 
Time MPI_Time - s I

50.0E-6 3.05E+0 13.3E+0 41.2E+0

Aggregate 
MPI_WAIT MPI_Wait - s A

000.0E+0 897.322E-3 4.47E+0 36.813E+0

Number of 
Messages Sent M - msg A

1.0E+0 6.724E+3 47.12E+3 269.376E+3

Average Sent 
Message Size L - B A

8.0E+0 27.721E+3 11.87E+3 5.539E+3

Collected Values
Parameters

mpiP
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Elapsed Time - - s I
32.33E+0 11.24E+0 3.62E+0 1.33E+0

Mop/s - - Mop/s I
46.28E+0 133.1E+0 413.08E+0 1.123E+3

Mop/s/process - - Mop/s I
46.28E+0 33.28E+0 25.82E+0 17.54E+0

Bandwidth BW (Liner interpolation) B/s I
920.0E+3 156.978E+6 105.416E+6 74.338E+6

Latency Lat (Liner interpolation) s I
8.29E-6 165.253E-6 104.789E-6 69.621E-6

Application Time App_Time - s I
35.5E+0 49.7E+0 65.2E+0 101.0E+0

MPI Time MPI_Time - s I
50.0E-6 3.05E+0 13.3E+0 41.2E+0

Non-MPI Time Non_MPI App_Time - MPI_Time s C
35.5E+0 46.65E+0 51.9E+0 59.8E+0

MPI_WAIT MPI_Wait - s A
000.0E+0 897.322E-3 4.47E+0 36.813E+0

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
50.0E-6 2.153E+0 8.83E+0 4.387E+0

NAS-PB

Analysis Views
Aggregate

Network Info.
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Application Time AT* App_Time / P s CIV
35.5E+0 12.425E+0 4.075E+0 1.578E+0

MPI Time MT* MPI_Time / P s CIV
50.0E-6 762.5E-3 831.25E-3 643.75E-3

Non-MPI Time - (App_Time - MPI_Time) / P s C
35.5E+0 11.663E+0 3.244E+0 934.375E-3

MPI_WAIT WT* MPI_Wait / P s C
000.0E+0 224.33E-3 279.363E-3 575.201E-3

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
50.0E-6 538.17E-3 551.887E-3 68.549E-3

Application Time - App_Time / M s C
35.5E+0 7.391E-3 1.384E-3 374.941E-6

MPI Time - MPI_Time / M s C
50.0E-6 453.599E-6 282.258E-6 152.946E-6

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
35.5E+0 6.938E-3 1.101E-3 221.995E-6

MPI_WAIT - MPI_Wait / M s C
000.0E+0 133.451E-6 94.86E-6 136.66E-6

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
50.0E-6 320.148E-6 187.398E-6 16.286E-6

Per CPU

Per Sent Message
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Application Time - App_Time / (P * M) s C
35.5E+0 1.848E-3 86.481E-6 5.858E-6

MPI Time - MPI_Time / (P * M) s C
50.0E-6 113.4E-6 17.641E-6 2.39E-6

Non-MPI Time - (App_Time - MPI_Time) / (P * 
M) s C

35.5E+0 1.734E-3 68.84E-6 3.469E-6

MPI_WAIT - MPI_Wait / (P * M) s CV
000.0E+0 33.363E-6 5.929E-6 2.135E-6

MPI Active Time CPUMsgActive (MPI_Time - MPI_Wait) / (P * 
M) s CO

50.0E-6 80.037E-6 11.712E-6 254.474E-9

Switch Delay D0 L/BW + Lat s CO
16.986E-6 341.845E-6 217.394E-6 144.133E-6

Customers N P # B
1.0E+0 4.0E+0 16.0E+0 64.0E+0

Centers K P + 2 # B
3.0E+0 6.0E+0 18.0E+0 66.0E+0

Switch Delay D0 L/BW + Lat s B
16.986E-6 341.845E-6 217.394E-6 144.133E-6

CPU Service 
Demand Dk

(MPI_Time - MPI_Wait) / (P * 
M) = CPU Message Active s B

50.0E-6 80.037E-6 11.712E-6 254.474E-9

Computation 
Delay

DP+1
(App_Time - MPI_Time) / M         

= MsgCompute s B
35.5E+0 6.938E-3 1.101E-3 221.995E-6

Model View
Model Inputs

Network View
Per Network Switch

Per CPU per Sent Message
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System 
Response Time R - s R

35.5E+0 7.61E-3 1.53E-3 383.125E-6

Switch Response 
Time

R0 - s R
16.986E-6 341.845E-6 217.394E-6 144.133E-6

CPU Response 
Time

Rk - s R
50.0E-6 82.617E-6 13.219E-6 265.58E-9

Computation 
Response Time

RP+1 - s R
35.5E+0 6.938E-3 1.101E-3 221.995E-6

System 
Throughput X - msg/s R

28.169E-3 525.603E+0 10.458E+3 167.047E+3

Switch Utilization U0 - # R
478.478E-9 179.675E-3 2.274E+0 24.077E+0

CPU MPI 
Utilization

Uk - # R
1.408E-6 42.068E-3 122.487E-3 42.509E-3

Total 
Computation 
Utilization

UP+1 - # R
999.998E-3 3.647E+0 11.514E+0 37.084E+0

App Time - 
Observed (Wall 
Clock)

AT* App_Time / P s CI
35.5E+0 12.425E+0 4.075E+0 1.578E+0

App Time - 
Model AT (R * M) / P s CR

35.5E+0 12.793E+0 4.506E+0 1.613E+0

Relative Error EAT (AT - AT*) / AT* % C
0.0% 3.0% 10.6% 2.2%

Model Outputs

Validation View
Application (Wall Clock) Time
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MPI Time - 
Observed MT* MPI_Time / P s CI

50.0E-6 762.5E-3 831.25E-3 643.75E-3

MPI Time - 
Model MT (Rk * M) + (R0 * M) / P s CR

66.986E-6 1.13E+0 1.263E+0 678.197E-3

Relative Error EMT (MT - MT*) / MT* % C
34.0% 48.2% 52.0% 5.4%

MPI_Wait Time - 
Estimated WT* MPI_Wait / P s C

000.0E+0 224.33E-3 279.363E-3 575.201E-3

MPI_Wait Time - 
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

16.986E-6 591.99E-3 711.218E-3 609.647E-3

Relative Error EWT (WT - WT*) / WT* % C
#DIV/0! 163.9% 154.6% 6.0%

Throughput - 
Observed X* M / AT* msg/s C

28.169E-3 541.167E+0 11.563E+3 170.694E+3

Throughput - 
Model X - msg/s R

28.169E-3 525.603E+0 10.458E+3 167.047E+3

Relative Error EX (X - X*) / X* % C
0.0% -2.9% -9.6% -2.1%

MPI Active Time

MPI Wait Time

Throughput
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MPI Wait - MPI_Wait s G
000.0E+0 897.322E-3 4.47E+0 36.813E+0

MPI Active - MPI_Time - MPI_Wait s G
50.0E-6 2.153E+0 8.83E+0 4.387E+0

Computation - Non-MPI Time s G
35.5E+0 46.65E+0 51.9E+0 59.8E+0

Switch Delay - R0 * M s G
16.986E-6 2.299E+0 10.244E+0 38.826E+0

MPI Contention - (Rk - Dk) * M * P s G
-1.263E-12 69.392E-3 1.136E+0 191.458E-3

MPI Active - Dk * M * P s G
50.0E-6 2.153E+0 8.83E+0 4.387E+0

Compute Time - MsgCompute * M s G
35.5E+0 46.65E+0 51.9E+0 59.8E+0

Graphical View
Measured Component Time

Modeled Component Time
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CG B

Label Symbol Derivation Unit Type 1 4 16 64

Number of CPUs P - CPU IO
1 4 16 64

Application - - Text I
CG B CG B CG B CG B

Machine - - Text I
kc kc kc kc

Run Date - - Date I
6/16/05 6/16/05 6/17/05 6/17/05

mpiP Collector 
PID - - # I

16705 15936 19051 21097

Aggregate 
Application Time App_Time - s I

2.14E+3 2.84E+3 2.48E+3 2.94E+3

Aggregate MPI 
Time MPI_Time - s I

64.0E-6 125.0E+0 371.0E+0 812.0E+0

Aggregate 
MPI_WAIT MPI_Wait - s A

000.0E+0 28.185E+0 92.25E+0 249.803E+0

Number of 
Messages Sent M - msg A

1.0E+0 31924 223.76E+3 1.279E+6

Average Sent 
Message Size L - B A

8.0E+0 148.557E+3 63.587E+3 29.661E+3

Collected Values
Parameters

mpiP
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Elapsed Time - - s I
2.099E+3 695.48E+0 151.12E+0 44.04E+0

Mop/s - - Mop/s I
26.07E+0 78.66E+0 362.01E+0 1.242E+3

Mop/s/process - - Mop/s I
26.07E+0 19.67E+0 22.63E+0 19.41E+0

Bandwidth BW - B/s I
920.0E+3 206.038E+6 189.205E+6 160.884E+6

Latency Lat - s I
8.29E-6 685.107E-6 319.528E-6 173.6E-6

Application Time App_Time - s I
2.14E+3 2.84E+3 2.48E+3 2.94E+3

MPI Time MPI_Time - s I
64.0E-6 125.0E+0 371.0E+0 812.0E+0

Non-MPI Time Non_MPI App_Time - MPI_Time s C
2.14E+3 2.715E+3 2.109E+3 2.128E+3

MPI_WAIT MPI_Wait - s A
000.0E+0 28.185E+0 92.25E+0 249.803E+0

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
64.0E-6 96.815E+0 278.75E+0 562.197E+0

Analysis Views
Aggregate

Network Info.

NAS-PB
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Application Time AT* App_Time / P s CIV
2.14E+3 710.0E+0 155.0E+0 45.938E+0

MPI Time MT* MPI_Time / P s CIV
64.0E-6 31.25E+0 23.188E+0 12.688E+0

Non-MPI Time - (App_Time - MPI_Time) / P s C
2.14E+3 678.75E+0 131.813E+0 33.25E+0

MPI_WAIT WT* MPI_Wait / P s C
000.0E+0 7.046E+0 5.766E+0 3.903E+0

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
64.0E-6 24.204E+0 17.422E+0 8.784E+0

Application Time - App_Time / M s C
2.14E+3 88.961E-3 11.083E-3 2.298E-3

MPI Time - MPI_Time / M s C
64.0E-6 3.916E-3 1.658E-3 634.724E-6

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
2.14E+3 85.046E-3 9.425E-3 1.663E-3

MPI_WAIT - MPI_Wait / M s C
000.0E+0 882.89E-6 412.272E-6 195.266E-6

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
64.0E-6 3.033E-3 1.246E-3 439.458E-6

Per CPU

Per Sent Message
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Application Time - App_Time / (P * M) s C
2.14E+3 22.24E-3 692.706E-6 35.908E-6

MPI Time - MPI_Time / (P * M) s C
64.0E-6 978.887E-6 103.627E-6 9.918E-6

Non-MPI Time - (App_Time - MPI_Time) / (P * 
M) s C

2.14E+3 21.261E-3 589.08E-6 25.991E-6

MPI_WAIT - MPI_Wait / (P * M) s CV
000.0E+0 220.722E-6 25.767E-6 3.051E-6

MPI Active Time CPUMsgActive (MPI_Time - MPI_Wait) / (P * 
M) s CO

64.0E-6 758.165E-6 77.86E-6 6.867E-6

Switch Delay D0 L/BW + Lat s CO
16.986E-6 1.406E-3 655.603E-6 357.963E-6

Customers N P # B
1.0E+0 4.0E+0 16.0E+0 64.0E+0

Centers K P + 2 # B
3.0E+0 6.0E+0 18.0E+0 66.0E+0

Switch Delay D0 L/BW + Lat s B
16.986E-6 1.406E-3 655.603E-6 357.963E-6

CPU Service 
Demand Dk

(MPI_Time - MPI_Wait) / (P * 
M) = CPU Message Active s B

64.0E-6 758.165E-6 77.86E-6 6.867E-6

Computation 
Delay

DP+1
(App_Time - MPI_Time) / M         

= MsgCompute s B
2.14E+3 85.046E-3 9.425E-3 1.663E-3

Network View
Per Network Switch

Per CPU per Sent Message

Model View
Model Inputs
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System 
Response Time R - s R

2.14E+3 89.563E-3 10.399E-3 2.559E-3

Switch Response 
Time

R0 - s R
16.986E-6 1.406E-3 655.603E-6 357.963E-6

CPU Response 
Time

Rk - s R
64.0E-6 777.754E-6 79.636E-6 8.405E-6

Computation 
Response Time

RP+1 - s R
2.14E+3 85.046E-3 9.425E-3 1.663E-3

System 
Throughput X - msg/s R

467.29E-6 44.661E+0 384.647E+0 25.011E+3

Switch Utilization U0 - # R
7.937E-9 62.794E-3 252.176E-3 8.953E+0

CPU MPI 
Utilization

Uk - # R
29.907E-9 33.861E-3 29.949E-3 174.25E-3

Total 
Computation 
Utilization

UP+1 - # R
1.0E+0 3.798E+0 3.625E+0 41.593E+0

App Time - 
Observed (Wall 
Clock)

AT* App_Time / P s CI
2.14E+3 710.0E+0 155.0E+0 45.938E+0

App Time - 
Model AT (R * M) / P s CR

2.14E+3 714.802E+0 145.432E+0 51.15E+0

Relative Error EAT (AT - AT*) / AT* % C
0.00% 0.68% -6.17% 11.35%

Validation View
Application (Wall Clock) Time

Model Outputs
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MPI Time - 
Observed MT* MPI_Time / P s CI

64.0E-6 31.25E+0 23.188E+0 12.688E+0

MPI Time - 
Model MT (Rk * M) + (R0 * M) / P s CR

80.986E-6 36.05E+0 26.988E+0 17.908E+0

Relative Error EMT (MT - MT*) / MT* % C
26.54% 15.36% 16.39% 41.15%

MPI_Wait Time - 
Estimated WT* MPI_Wait / P s C

000.0E+0 7.046E+0 5.766E+0 3.903E+0

MPI_Wait Time - 
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

16.986E-6 11.847E+0 9.566E+0 9.124E+0

Relative Error EWT (WT - WT*) / WT* % C
#DIV/0! 68.12% 65.91% 133.75%

Throughput - 
Observed X* M / AT* msg/s C

467.29E-6 44.963E+0 1.444E+3 27.849E+3

Throughput - 
Model X - msg/s R

467.29E-6 44.661E+0 384.647E+0 25.011E+3

Relative Error EX (X - X*) / X* % C
0.00% -0.67% -73.36% -10.19%

MPI Wait Time

Throughput

MPI Active Time
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MPI Wait - MPI_Wait s G
000.0E+0 28.185E+0 92.25E+0 249.803E+0

MPI Active - MPI_Time - MPI_Wait s G
64.0E-6 96.815E+0 278.75E+0 562.197E+0

Computation - Non-MPI Time s G
2.14E+3 2.715E+3 2.109E+3 2.128E+3

Switch Delay - R0 * M s G
16.986E-6 44.885E+0 146.698E+0 457.941E+0

MPI Contention - (Rk - Dk) * M * P s G
-161.584E-15 2.501E+0 6.358E+0 125.974E+0

MPI Active - Dk * M * P s G
64.0E-6 96.815E+0 278.75E+0 562.197E+0

Compute Time - MsgCompute * M s G
2.14E+3 2.715E+3 2.109E+3 2.128E+3

Graphical View
Measured Component Time

Modeled Component Time
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CG C

Label Symbol Derivation Unit Type 4 16 64

Number of CPUs P - CPU IO
4 16 64

Application - - Text I
CG C CG C CG C

Machine - - Text I
kc kc kc

Run Date - - Date I
6/24/05 6/17/05 6/17/05

mpiP Collector 
PID - - # I

1436 2482 8876

Aggregate 
Application Time App_Time - s I

9.23E+3 8.63E+3 7.91E+3

Aggregate MPI 
Time MPI_Time - s I

121.0E+0 787.0E+0 1.92E+3

Aggregate 
MPI_WAIT MPI_Wait - s A

7.67E+0 164.455E+0 595.254E+0

Number of 
Messages Sent M - msg A

31.924E+3 223.76E+3 1.279E+6

Average Sent 
Message Size L - B A

297.11E+3 127.17E+3 59.318E+3

Parameters

mpiP

Collected Values
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Elapsed Time - - s I
2.265E+3 527.45E+0 118.43E+0

Mop/s - - Mop/s I
63.29E+0 271.78E+0 1.21E+3

Mop/s/process - - Mop/s I
15.82E+0 16.99E+0 18.91E+0

Bandwidth BW - B/s I
213.469E+6 204.124E+6 186.148E+6

Latency Lat - s I
1.325E-3 593.033E-6 301.164E-6

Application Time App_Time - s I
9.23E+3 8.63E+3 7.91E+3

MPI Time MPI_Time - s I
121.0E+0 787.0E+0 1.92E+3

Non-MPI Time Non_MPI App_Time - MPI_Time s C
9.109E+3 7.843E+3 5.99E+3

MPI_WAIT MPI_Wait - s A
7.67E+0 164.455E+0 595.254E+0

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
113.33E+0 622.545E+0 1.325E+3

Aggregate

Network Info.

Analysis Views

NAS-PB
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Application Time AT* App_Time / P s CIV
2.308E+3 539.375E+0 123.594E+0

MPI Time MT* MPI_Time / P s CIV
30.25E+0 49.188E+0 30.0E+0

Non-MPI Time - (App_Time - MPI_Time) / P s C
2.277E+3 490.188E+0 93.594E+0

MPI_WAIT WT* MPI_Wait / P s C
1.918E+0 10.278E+0 9.301E+0

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
28.332E+0 38.909E+0 20.699E+0

Application Time - App_Time / M s C
289.124E-3 38.568E-3 6.183E-3

MPI Time - MPI_Time / M s C
3.79E-3 3.517E-3 1.501E-3

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
285.334E-3 35.051E-3 4.682E-3

MPI_WAIT - MPI_Wait / M s C
240.259E-6 734.962E-6 465.298E-6

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
3.55E-3 2.782E-3 1.036E-3

Per CPU

Per Sent Message
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Application Time - App_Time / (P * M) s C
72.281E-3 2.411E-3 96.611E-6

MPI Time - MPI_Time / (P * M) s C
947.563E-6 219.823E-6 23.45E-6

Non-MPI Time - (App_Time - MPI_Time) / (P * 
M) s C

71.333E-3 2.191E-3 73.16E-6

MPI_WAIT - MPI_Wait / (P * M) s CV
60.065E-6 45.935E-6 7.27E-6

MPI Active Time CPUMsgActive (MPI_Time - MPI_Wait) / (P * 
M) s CO

887.498E-6 173.887E-6 16.18E-6

Switch Delay D0 L/BW + Lat s CO
2.717E-3 1.216E-3 619.823E-6

Customers N P # B
4.0E+0 16.0E+0 64.0E+0

Centers K P + 2 # B
6.0E+0 18.0E+0 66.0E+0

Switch Delay D0 L/BW + Lat s B
2.717E-3 1.216E-3 619.823E-6

CPU Service 
Demand Dk

(MPI_Time - MPI_Wait) / (P * 
M) = CPU Message Active s B

887.498E-6 173.887E-6 16.18E-6

Computation 
Delay

DP+1
(App_Time - MPI_Time) / M         

= MsgCompute s B
285.334E-3 35.051E-3 4.682E-3

Model View

Per Network Switch

Per CPU per Sent Message

Network View

Model Inputs
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System 
Response Time R - s R

291.634E-3 39.246E-3 6.528E-3

Switch Response 
Time

R0 - s R
2.717E-3 1.216E-3 619.823E-6

CPU Response 
Time

Rk - s R
895.65E-6 186.209E-6 19.166E-6

Computation 
Response Time

RP+1 - s R
285.334E-3 35.051E-3 4.682E-3

System 
Throughput X - msg/s R

13.716E+0 407.681E+0 9.803E+3

Switch Utilization U0 - # R
37.266E-3 495.74E-3 6.076E+0

CPU MPI 
Utilization

Uk - # R
12.173E-3 70.89E-3 158.617E-3

Total 
Computation 
Utilization

UP+1 - # R
3.914E+0 14.29E+0 45.899E+0

App Time - 
Observed (Wall 
Clock)

AT* App_Time / P s CI
2.308E+3 539.375E+0 123.594E+0

App Time - 
Model AT (R * M) / P s CR

2.328E+3 548.86E+0 130.497E+0

Relative Error EAT (AT - AT*) / AT* % C
0.9% 1.8% 5.6%

Validation View
Application (Wall Clock) Time

Model Outputs
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MPI Time - 
Observed MT* MPI_Time / P s CI

30.25E+0 49.188E+0 30.0E+0

MPI Time - 
Model MT (Rk * M) + (R0 * M) / P s CR

50.277E+0 58.672E+0 36.908E+0

Relative Error EMT (MT - MT*) / MT* % C
66.2% 19.3% 23.0%

MPI_Wait Time - 
Estimated WT* MPI_Wait / P s C

1.918E+0 10.278E+0 9.301E+0

MPI_Wait Time - 
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

21.945E+0 19.763E+0 16.209E+0

Relative Error EWT (WT - WT*) / WT* % C
1044.4% 92.3% 74.3%

Throughput - 
Observed X* M / AT* msg/s C

13.835E+0 414.851E+0 10.351E+3

Throughput - 
Model X - msg/s R

13.716E+0 407.681E+0 9.803E+3

Relative Error EX (X - X*) / X* % C
-0.9% -1.7% -5.3%

MPI Wait Time

Throughput

MPI Active Time
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MPI Wait - MPI_Wait s G
7.67E+0 164.455E+0 595.254E+0

MPI Active - MPI_Time - MPI_Wait s G
113.33E+0 622.545E+0 1.325E+3

Computation - Non-MPI Time s G
9.109E+3 7.843E+3 5.99E+3

Switch Delay - R0 * M s G
86.738E+0 272.092E+0 792.937E+0

MPI Contention - (Rk - Dk) * M * P s G
1.041E+0 44.113E+0 244.439E+0

MPI Active - Dk * M * P s G
113.33E+0 622.545E+0 1.325E+3

Compute Time - MsgCompute * M s G
9.109E+3 7.843E+3 5.99E+3

Graphical View
Measured Component Time

Modeled Component Time
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CG D

Label Symbol Derivation Unit Type 64

Number of CPUs P - CPU IO
64

Application - - Text I
CG D

Machine - - Text I
kc

Run Date - - Date I
8/8/05

mpiP Collector 
PID - - # I

2883

Aggregate 
Application Time App_Time - s I

336.0E+3

Aggregate MPI 
Time MPI_Time - s I

30.2E+3

Aggregate 
MPI_WAIT MPI_Wait - s A

6.284E+3

Number of 
Messages Sent M - msg A

1.7E+6

Average Sent 
Message Size L - B A

593.14E+3

Collected Values
Parameters

mpiP
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Elapsed Time - - s I
5.144E+3

Mop/s - - Mop/s I
708.25E+0

Mop/s/process - - Mop/s I
11.07E+0

Bandwidth BW - B/s I
217.381E+6

Latency Lat - s I
2.6E-3

Application Time App_Time - s I
336.0E+3

MPI Time MPI_Time - s I
30.2E+3

Non-MPI Time Non_MPI App_Time - MPI_Time s C
305.8E+3

MPI_WAIT MPI_Wait - s A
6.284E+3

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
23.916E+3

Network Info.

NAS-PB

Analysis Views
Aggregate
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Application Time AT* App_Time / P s CIV
5.25E+3

MPI Time MT* MPI_Time / P s CIV
471.875E+0

Non-MPI Time - (App_Time - MPI_Time) / P s C
4.778E+3

MPI_WAIT WT* MPI_Wait / P s C
98.182E+0

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
373.693E+0

Application Time - App_Time / M s C
197.636E-3

MPI Time - MPI_Time / M s C
17.764E-3

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
179.872E-3

MPI_WAIT - MPI_Wait / M s C
3.696E-3

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
14.068E-3

Per CPU

Per Sent Message
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Application Time - App_Time / (P * M) s C
3.088E-3

MPI Time - MPI_Time / (P * M) s C
277.558E-6

Non-MPI Time - (App_Time - MPI_Time) / (P * 
M) s C

2.811E-3

MPI_WAIT - MPI_Wait / (P * M) s CV
57.751E-6

MPI Active Time CPUMsgActive (MPI_Time - MPI_Wait) / (P * 
M) s CO

219.807E-6

Switch Delay D0 L/BW + Lat s CO
5.328E-3

Customers N P # B
64.0E+0

Centers K P + 2 # B
66.0E+0

Switch Delay D0 L/BW + Lat s B
5.328E-3

CPU Service 
Demand Dk

(MPI_Time - MPI_Wait) / (P * 
M) = CPU Message Active s B

219.807E-6

Computation 
Delay

DP+1
(App_Time - MPI_Time) / M         

= MsgCompute s B
179.872E-3

Model View
Model Inputs

Network View
Per Network Switch

Per CPU per Sent Message
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System 
Response Time R - s R

200.311E-3

Switch Response 
Time

R0 - s R
5.328E-3

CPU Response 
Time

Rk - s R
236.112E-6

Computation 
Response Time

RP+1 - s R
179.872E-3

System 
Throughput X - msg/s R

319.503E+0

Switch Utilization U0 - # R
1.702E+0

CPU MPI 
Utilization

Uk - # R
70.229E-3

Total 
Computation 
Utilization

UP+1 - # R
57.47E+0

App Time - 
Observed (Wall 
Clock)

AT* App_Time / P s CI
5.25E+3

App Time - 
Model AT (R * M) / P s CR

5.321E+3

Relative Error EAT (AT - AT*) / AT* % C
1.4%

Model Outputs

Validation View
Application (Wall Clock) Time



53

MPI Time - 
Observed MT* MPI_Time / P s CI

471.875E+0

MPI Time - 
Model MT (Rk * M) + (R0 * M) / P s CR

542.946E+0

Relative Error EMT (MT - MT*) / MT* % C
15.1%

MPI_Wait Time - 
Estimated WT* MPI_Wait / P s C

98.182E+0

MPI_Wait Time - 
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

169.254E+0

Relative Error EWT (WT - WT*) / WT* % C
72.4%

Throughput - 
Observed X* M / AT* msg/s C

323.828E+0

Throughput - 
Model X - msg/s R

319.503E+0

Relative Error EX (X - X*) / X* % C
-1.3%

MPI Wait Time

Throughput

MPI Active Time
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MPI Wait - MPI_Wait s G
6.284E+3

MPI Active - MPI_Time - MPI_Wait s G
23.916E+3

Computation - Non-MPI Time s G
305.8E+3

Switch Delay - R0 * M s G
9.058E+3

MPI Contention - (Rk - Dk) * M * P s G
1.774E+3

MPI Active - Dk * M * P s G
23.916E+3

Compute Time - MsgCompute * M s G
305.8E+3

Graphical View
Measured Component Time

Modeled Component Time
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Data Type Codes

Types

A Auxillary calculation, done separately

B Values for building a model

C Calculated in this spreadsheet

G Ancillary calculation for graphical representation

I Input directly from measurement data

R Results from model

O Output for building a model

V Value for validating a model

Description


