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We propose a real-space finite differences approach for accurate and unbiased O(N) Density Func-
tional Theory molecular dynamics simulations based on a localized orbitals representation of the
electronic structure. The discretization error can be reduced systematically by adapting the mesh
spacing, while the orbitals truncation error decreases exponentially with the radius of the local-
ization regions. For regions large enough, energy conservation in microcanonical simulations is
demonstrated for liquid water. We propose an explanation for the energy drift observed for smaller
regions.

PACS numbers: 71.15-m 71.15.Dx 71.15.Ap 71.15.Pd

I. INTRODUCTION

Density Functional Theory (DFT) is now a well es-
tablished model for numerical simulations in condensed
matter and is used to study a wide range of phenome-
nas (see e.g. Ref. [1–3]). Modern supercomputers al-
low DFT simulations with a few hundred atoms. That
number depends on the time scale of interest, as well
as on the number of degrees of freedom required to de-
scribe accurately the various atomic species composing
the physical system. Most application codes are limited
in problem size by the total number of arithmetic opera-
tions which grows like O(N3), where N is the number of
electrons. Thus the size of tractable problems — using
the standard Plane Wave (PW) approach for example —
cannot grow as fast as computer power. This issue has
motivated research on linear scaling approaches, that is
numerical algorithm with O(N) complexity. Several new
ideas were published at the begining of the 1990s (for a
review, see e.g. Ref. [4]). For accurate first-principles
methods however, exploring such ideas has remained a
challenging research area. Indeed linear scaling meth-
ods typically become competitive for large problems that
were beyond the computer ressources available to most
researchers until recently. Even now, achieving manage-
able timings for large systems requires a very efficient
parallelization. Thus scalability on a large number of
processors is also a very desirable property in order to
address large problems where linear scaling algorithms
becomes relevant. As far as O(N) molecular dynamics
(MD) simulations are concerned, several attempts by var-
ious authors have been plagued by a systematic negative
drift in total energy when introducing localization con-
straints on the orbitals [5–9]. This means an artificial
loss in energy over time which is hard to compensate for
without affecting the thermodynamics of the system.

In this Letter we demonstrate for the first time the pos-
sibility of carrying out energy conserving first-principles
molecular dynamics with PW accuracy in O(N) oper-
ations. Our approach is in the line of traditional PW
calculations where the solution of the Kohn-Sham (KS)
equations is represented by a set of occupied electronic
orbitals described in a very accurate numerical basis set.

Instead of dealing with extend electronic states, we rep-
resent the same occupied space by a set of nonorthogo-
nal orbitals that can be localized. This general approach
was first proposed by Galli and Parrinello[10]. The elec-
tronic structure of a physical system is given by N non-
orthogonal orbitals {φ}N

i=1 that spans the invariant sub-
space of the N doubly occupied electronic states (neglect-
ing the spin) and minimize the DFT energy functional

EKS [{φi}N
i=1] =

N∑
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S is the overlap matrix between orbitals and ρ is the
electronic density ρ(r) = 2

∑N
i,j=1 (S−1)ijφi(r)φj(r).

We use orbitals described by their value on a real-space
mesh and discretize the Laplacian by finite differences
(FD) as proposed in Ref.11. FD was initially proposed as
a simple and efficient method for electronic structure cal-
culations on parallel architectures.[12] A real-space dis-
cretization is also a very natural approach to describe
orbitals localized in real-space and truncated beyond a
cutoff radius Rc. Other similar algorithms have been
proposed in the literature, based on various discretization
schemes for the Laplacian and the representation of the
electronic wave functions[13–15]. Truncation of the or-
bitals outside localization regions (LR) is justified by the
exponential decay of the generalized Wannier functions
for systems with a finite band gap[16] and leads naturally
to O(N) scaling. One original and important feature of
our algorithm is the introduction of adaptive localization
centers (ALC) for the LR. This improves accuracy and
allow general molecular dynamics (MD) simulations.[9]

In this Letter we demonstrate how such a linear scaling
approach is a practical alternative to PW calculations for
arbitrary accuracy first-principles MD for very large sys-
tems. Our linear-scaling approach allows a total control
of the accuracy. First, the mesh spacing can be reduced
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to ensure that the problem is solved within an acceptable
discretization error. We use a compact fourth order FD
approach — Mehrstellen scheme — so that the error on
the energy is reduced by a factor 16 when the grid size
is doubled. This is an efficient approach for massively
parallel computation[17]. Second, the truncation radius
used to limit the extend of the localized orbitals can be
enlarged in order to ensure results within a certain tol-
erance compared to the standard O(N3) approach, i.e.
without localization constraints. This truncation error
decays exponentially with the localization radius[9].

The energy functional is discretized on a uniform real-
space mesh that covers the whole computational cell.
The potentials, wave functions and electronic density are
represented numerically by their values at the nodes of a
common uniform grid. We use periodic boundary con-
ditions. A filtering procedure is applied to the pseu-
dopotentials before interpolating these at the grid points
in order to reduce dependance on grid position [17].
The results presented in this paper were obtained using
the GGA-PBE exchange-correlation functional[18]. We
use norm-conserving pseudopotentials in the Kleinman-
Bylander form [19].

The gradient of the energy functional (1) determines
the steepest descent direction. This direction is com-
bined with a multigrid preconditioner which provides a
convergence rate independent of the discretization mesh
spacing. An even faster convergence is achieved by us-
ing the preconditioned steepest descent directions in a
block version of Anderson’s extrapolation scheme as de-
scribed in Ref. [9]. This algorithm has the property
of not involving any linear combination among the trial
wave functions localized in different regions and thus is
very appropriate to deal with localized orbitals.

Linear scaling is achieved by an iterative minimization
of the energy functional with localization constraints on
the orbitals. This is done by truncating the corrections
computed at each step in order to preserve a strict lo-
calization of all the trial localized orbitals. Inverting the
matrix S is done without any truncation, and thus in
O(N3) operations. With an efficient parallelization this
operation is negligible in all the calculations we have been
carrying out so far. Note that unlike several other linear
scaling algorithms, N is minimal here: it is equal to the
number of occupied states.

A key element in achieving accurate electronic struc-
ture calculations at minimal cost is the adaptivity of the
localization centers. This is done by iteratively reposi-
tioning these centers at the centroids of charge of each
orbital.[9] This enables an accurate solution without in-
cluding any unoccupied orbitals in the calculations for
systems with a finite band gap. In the case of water, only
4 doubly occupied states are computed for each water
molecule. For comparison, methods based on numerical
atomic orbitals computed and parametrized beforehand
require several empty orbitals per molecule (see e.g. Ref.
[20]). On the other hand our approach requires obviously
more degrees of freedom per orbital. This provides more
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FIG. 1: Discretization error on the forces for the finite dif-
ferences ”Mehrstellen” and the Plane Wave approaches for
(H2O)32 (average and maximum over sample). The reference
values are the result of a fully converged PW calculation (400
Ry).

flexibility and avoids any reparametrization according to
environmental factors. ALC are essential for molecular
dynamics; they can adapt to the environment and move
along with the dynamics. This also removes the difficulty
of choosing appropriate localizations centers in general.

Since our reference approach is the PW method, we
evaluate the discretization error by computing the dif-
ference between our numerical results and a fully con-
verged PW calculation. We choose a sample of 32 water
molecules in the liquid phase as test system. The mea-
sured discretization error on the energy for the FD ap-
proach shows a convergence rate of O(h4), in agreement
with the theoretical convergence rate. Figure 1 shows the
measured discretization error on forces as a function of
mesh spacing. For comparison, we also show the results
for PW.

It is desirable to define an equivalent energy cutoff
for real-space FD discretizations. PW implementations
usually use two different cutoffs: one for the wave func-
tions, and a larger one for the electronic density. Ab
initio molecular dynamics of water are usually carried
out with a PW cutoff of 70 to 85 [Ry] for the wave
functions[21, 22]. Based on the comparison of aver-
age discretization errors on forces between the two ap-
proaches (Fig.1), we establish that an 80 Ry PW cutoff
is equivalent to a mesh spacing of 0.21 Bohr for the FD
approach. For the 32 water molecules cell, it corresponds
to a grid of 88 points in each direction, while we use grids
of 56 and 110 for the wave functions and electronic den-
sity representation respectively in the PW calculation.
We use these parameters in the remaining of the paper.

A previous study showed that the truncation error gen-
erally decays exponentially with the radius of the local-
ization regions. For liquid water, an accuracy better than
10−3 Bohr — i.e. of the order of magnitude of the dis-
cretization error — is reached for Rc = 8 Bohr.[9] Solv-
ing the KS equations within the discretization accuracy
is not enough however to guarantee a sufficiently good
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TABLE I: Measure of energy drift and number of SC steps
required for convergence.

Localization radius Energy drift # SC iteration/MD step
(Bohr) (mHa/atom/ps)

8 -0.222 (-47 K/ps) 29
9 -0.103 (-22 K/ps) 23
10 +0.001 (0 K/ps) 14

conservation of the total energy. To demonstrate the
applicability of our O(N) approach to large scale Born-
Oppenheimer MD problems, we have simulated liquid
water at ambient conditions for a 512 molecule sample
in a cubic cell of side length 46.98 Bohr Three differ-
ent localization radii were used: 8, 9 and 10 Bohr. At
each ionic step, the wave functions were optimized un-
til the energy change between two consecutive steps is
smaller than 8 · 10−6. We use a time step of 0.242 fs. As
shown in Table I, the number of iterations required to
reach this tolerance decreases with increased localization
radius. The results with localization radius 8 and 9 Bohr
show a negative drift in the total energy. This drift, mea-
sured by a linear fit over 0.1 ps, decreases with increased
localization radius and becomes exceedingly small for 10
Bohr (see Table I). Remarkably, the number of self-
consistent (SC) steps required to achieve convergence at
each MD steps also drops at 10 Bohr to reach a similar
value as the one obtained for an O(N3) calculation with
64 molecules (as reported in [9]).

We take a closer look at the total energy during the
simulation and propose an explanation for the energy
drift. For Rc = 10 Bohr the total energy is not perfectly
constant, but fluctuates smoothly during the entire sim-
ulation. For smaller radii (8 and 9 Bohr), the smooth
fluctuations are interrupted by sharp drops in energy at
various points during the 0.1 ps runs. Simultaneously,
the number of SC iterations required to reach the tol-
erance criterion sharply increases, while the average and
maximum displacements of the ALC also significantly in-
crease (see Fig.2). We interpret this phenomena as the
transition between two local minima of the KS energy,
falling into a local minima of slightly lower energy. This
transition is followed by a global reorganization of the
orbitals — whose signature is a much larger than aver-
age displacement for most ALC — that require more SC
iterations and generates discontinuities in the ALC tra-
jectories. This is accompanied by a drop in the KS energy
which is not taken into account in the forces computa-
tion, and thus produces a net decrease in total energy.
This energy drift corresponds to as much as 48 [K/ps]
for Rc = 8 Bohr. Going towards larger localization radii
reduces this effect. For Rc = 10 Bohr, no such disconti-
nuity occurs over a 0.1 ps test.

Note that the increases in ALC displacements, while
clearly visible, remain quite small (< 0.1 Bohr). They
correspond to changes in shape of the localized orbitals
that are hard to see on a contour plot. For illustra-
tion purposes, we show in Fig. 3 the contour plots of
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FIG. 2: Total energy and ALC displacements during molec-
ular dynamics simulation of water (512 molecules) at 300 K
with localization radius of 9 Bohr

FIG. 3: Contour plot of one localized obitals for two ground
state local minimas for polyacetylene in the plane of the
molecule (MD snapshot at 300 K, Rc = 11 Bohr). The right
picture corresponds to a state lower in energy by 0.00089 Ha.

a localized orbital corresponding to two ground states lo-
cal minima for a different system (polyacetylene). These
were obtained by minimizing the energy functional from
two different starting points.

For an efficient parallelization, we use a standard do-
main decomposition approach. The discretization grid is
evenly divided among the processors. Each processors
uses the data associated to its local subgrid. Since the
localized orbitals spread only over a limited number of
these sub-domains, each processor has to deal with only
a fraction of the total number of orbitals. When the num-
ber of processors is increased proportionally with the size
of the system, the amount of data associated to each pro-
cessor remains constant. This approach is implemented
by packing together several non-overlaping localized or-
bitals into a single global array that represents a grid-
based function over the whole discretization grid. This
packing problem is equivalent to a graph coloring prob-
lem. Each localized orbital corresponds to a node and
the overlap between two orbitals is represented by an
edge joining the two nodes. The graph coloring problem
is known to be NP-complete. We solve it approximately
using the recursive largest first (RLF) coloring algorithm
[23]. This algorithm requires O(N2) time for our applica-
tion, but the total time required for this process, carried
out at each MD step, is negligible. The values of the
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FIG. 4: a) CPU time for 1 SC step with Rc = 10 Bohr for
liquid water, for 2 ratios of molecules/CPU (weak scaling).
The numbers next to the data points indicate the number of
processors used. b) Comparison with total CPU time required
for a preconditioned steepest descent step in PW using a ratio
of 35 CPUs/64 molecules.

global arrays at grid points outside of the localization re-
gions are set and kept at zero throughout the calculation.

We evaluated the scaling of our algorithm by mea-
suring timings for one step in the iterative SC solver
used to minimize the energy functional. We used liq-
uid water as test system, with up to 512 molecules and
784 CPUs. A strictly O(N) complexity and a perfect
scaling would give constant timings for a constant ra-
tio molecules/CPU. The results are quite to close to this
ideal situation (see Fig. 4). [24] Parallel scaling efficiency

is about 80% in this regime. These results are compared
with the cost of a standard PW calculations for a state
of the art implementation [25] to estimate the crossover
between the two methods. Looking at the cost of a PW
simple preconditioned steepest descent step, our O(N)
approach becomes advantageous above 500-600 atoms.
Note that this number does not reflect the efficiency of
the iterative algorithms in term of number of iterations
required to achieve a good energy conservation. Note also
that this is a dense 3D system. For systems with more
vacuum, the crossover point would be shifted towards a
smaller number of atoms.

In summary, we have demonstrated the possibility of
carrying out Born-Oppenheimer MD simulations in O(N)
operations using a real-space FD approach with strictly
localized orbitals. PW accuracy can be achieved and a
comparison with a PW code shows a crossover around
500 atoms for liquid water. Using adaptive localization
centers and sufficiently large localization regions are two
key elements to ensure accuracy and energy conservation.
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