MODELING THE CATHODIC REGION IN CREVICE CORROSION UNDER A THIN ELECTROLYTE FILM INCLUDING PARTICULATES

PDF Version Also Available for Download.

Description

Crevice corrosion may be limited by the capacity of the external cathodic region to support anodic dissolution currents within the crevice. The analysis here focuses on behavior of metal surfaces covered by a thin ({approx}microns) layer of the electrolyte film including particulates. The particulates can affect the cathode current capacity (I{sub total}) by increasing the solution resistance (''volume effect'') and by decreasing the electrode area (''surface effect''). In addition, there can be particulate effects on oxygen reduction kinetics and oxygen transport. This work simulates and characterizes the effect of a uniform particulate monolayer on the cathode current capacity for steady ... continued below

Creation Information

Agarwal, A.S.; Landau, U.; Shan, X. & Payer, J.H. March 14, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Crevice corrosion may be limited by the capacity of the external cathodic region to support anodic dissolution currents within the crevice. The analysis here focuses on behavior of metal surfaces covered by a thin ({approx}microns) layer of the electrolyte film including particulates. The particulates can affect the cathode current capacity (I{sub total}) by increasing the solution resistance (''volume effect'') and by decreasing the electrode area (''surface effect''). In addition, there can be particulate effects on oxygen reduction kinetics and oxygen transport. This work simulates and characterizes the effect of a uniform particulate monolayer on the cathode current capacity for steady state conditions in the presence of a thin electrolyte film. Particulate configurations with varying particle size, shape, arrangement, volume fraction, and electrode area coverage were numerically modeled as a function of the properties of the system. It is observed that the effects of particles can be fully accounted for in terms of two corrections: the volume blockage effect on the electrolyte resistivity can be correlated using Bruggeman's equation, and the electrode coverage effect can be modeled in terms of a simple area correction to the kinetics expression. For the range of parameters analyzed, applying these two correction factors, cathodes covered with thin electrolyte films that contain particles can be represented in terms of equivalent homogeneous electrolytes that can then be analyzed using simpler approaches. Continuing work will examine the effects of greater volume fractions of particles and multiple particle layers.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • DOI: 10.2172/884908 | External Link
  • Office of Scientific & Technical Information Report Number: 884908
  • Archival Resource Key: ark:/67531/metadc892453

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 14, 2006

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Nov. 29, 2016, 8:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Agarwal, A.S.; Landau, U.; Shan, X. & Payer, J.H. MODELING THE CATHODIC REGION IN CREVICE CORROSION UNDER A THIN ELECTROLYTE FILM INCLUDING PARTICULATES, report, March 14, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc892453/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.