TESTING OF FLOW THROUGH STRESS CORROSION CRACKS

PDF Version Also Available for Download.

Description

One aspect of licensing the high-level nuclear waste repository to be located at Yucca Mountain, Nevada, is the determination of the inclusion of the effects of features, events, and processes (FEPs) on the performance of the repository. Among the FEPs evaluated are the advection of solids and liquids through stress corrosion cracks in waste packages and drip shields. The presence of one or more cracks or other small openings of sufficient size in a waste package or drip shield may provide a pathway for the advective flow of water (e.g., thin films or droplets) or solid material through a waste ... continued below

Creation Information

NA October 18, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

One aspect of licensing the high-level nuclear waste repository to be located at Yucca Mountain, Nevada, is the determination of the inclusion of the effects of features, events, and processes (FEPs) on the performance of the repository. Among the FEPs evaluated are the advection of solids and liquids through stress corrosion cracks in waste packages and drip shields. The presence of one or more cracks or other small openings of sufficient size in a waste package or drip shield may provide a pathway for the advective flow of water (e.g., thin films or droplets) or solid material through a waste package or drip shield. The resulting flux may affect drip shield performance and/or subsequent dripping onto or into the waste packages. The objective of this set of tests involved the detection/non-detection of advective water flow through stress cracks similar to those that may occur in the drip shield or waste package. If sufficient flow volume was present then attempts were made to quantify the volume of water flow through a stress crack. Literature was reviewed to identify previous studies and models that may be relevant to the current study of flow through stress corrosion cracks in a drip shield or waste package. Although no studies could be found that were directly applicable to our current problem, studies were identified that investigated portions of the overall problem. The papers that were reviewed were organized into the following categories: (1) maximum static head in a crack; (2) liquid impingement on surfaces [1]; (3) leakage through stress cracks [2]; and (4) dripping from cracks and fractures [3]. Because of the unique configuration and processes associated with the current problem of flow through stress corrosion cracks in drip shields and waste packages, experimental studies are needed to better understand whether flow can occur in stress cracks from impinging water droplets.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • DOI: 10.2172/884933 | External Link
  • Office of Scientific & Technical Information Report Number: 884933
  • Archival Resource Key: ark:/67531/metadc892442

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 18, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 8, 2016, 11:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

NA. TESTING OF FLOW THROUGH STRESS CORROSION CRACKS, report, October 18, 2005; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc892442/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.