Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid Crystal Templating

PDF Version Also Available for Download.

Description

The development of synthetic pathways to yield advanced functional materials is an important aspect of materials science. In particular, the ability to control and manipulate the chemical composition and structure of inorganic nanomaterials is highly desirable. Two synthetic approaches which show great promise for producing the next generation of functional inorganic nanomaterials are (1) templating of supramolecular assemblies and (2) ion exchange within nanostructured inorganic solids to manipulate chemical composition. Templating of supramolecular assemblies of surfactants and amphiphilic polymers has already proven to be a powerful technique in synthesizing various inorganic structures. Namely, numerous examples of mesostructured metal oxides (SiO{sub ... continued below

Physical Description

PDF-file: 16 pages; size: 0 Kbytes

Creation Information

Lubeck, C R; Doyle, F M; Gash, A E; Satcher, J H & Han, T Y August 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The development of synthetic pathways to yield advanced functional materials is an important aspect of materials science. In particular, the ability to control and manipulate the chemical composition and structure of inorganic nanomaterials is highly desirable. Two synthetic approaches which show great promise for producing the next generation of functional inorganic nanomaterials are (1) templating of supramolecular assemblies and (2) ion exchange within nanostructured inorganic solids to manipulate chemical composition. Templating of supramolecular assemblies of surfactants and amphiphilic polymers has already proven to be a powerful technique in synthesizing various inorganic structures. Namely, numerous examples of mesostructured metal oxides (SiO{sub 2}, TiO{sub 2}, WO{sub 3}, etc.) have been synthesized by templating the liquid crystalline phases of amphiphilic polymers and surfactants (i.e. vesicles, 2D and 3D hexagonal and cubic phases, etc.) with inorganic precursors, resulting in the formation of highly ordered inorganic-organic hybrid materials. Although the templating of supramolecular assemblies has been successful in generating highly ordered mesostructured metal oxides, there are only a few examples of non-oxidic mesostructured inorganic materials. The recent developments of ion exchange within nanoparticles offer a promising approach to generating novel nanostructured inorganic materials with unique chemical compositions. Konenkamp et al. and Alivisatos et al. have successfully utilized the ion exchange methods to fully transform the chemical composition of simple nanostructured inorganic materials while retaining their shapes. Although the exact mechanism by which the ions exchange while retaining the overall structure is still unclear, this approach combined with templating of supramolecular assemblies can provide a potent technique for obtaining highly ordered inorganic materials with unique structures and chemical compositions. Herein, we describe for the first time, the successful synthesis of highly ordered, mesostructured Cu{sub x}S, by combining the templating of the supramolecular assemblies of non-ionic amphiphilic polymer method with the cation exchange method to transform mesostructured cadmium sulfide (CdS) into mesostructured copper sulfides (CuS, Cu{sub 2}S).

Physical Description

PDF-file: 16 pages; size: 0 Kbytes

Source

  • Journal Name: Advanced Materials; Journal Volume: 18; Journal Issue: 6

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-214627
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 884775
  • Archival Resource Key: ark:/67531/metadc892405

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 8, 2016, 11:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lubeck, C R; Doyle, F M; Gash, A E; Satcher, J H & Han, T Y. Synthesis of Mesostructured Copper Sulfide by Cation Exchange and Liquid Crystal Templating, article, August 1, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc892405/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.