Electronic Structure Calculations of an Oxygen Vacancy in KH2PO4

PDF Version Also Available for Download.

Description

We present first-principles total-energy density-functional theory electronic structure calculations for the neutral and charge states of an oxygen vacancy in KH{sub 2}PO{sub 4} (KDP). Even though the overall DOS profiles for the defective KDP are quite similar to those of the perfect KDP, the oxygen vacancy in the neutral and +1 charge states induces defect states in the band gap. For the neutral oxygen vacancy, the gap states are occupied by two electrons. The difference between the integral of the total density of states (DOS) and the sum of the DOS projected on the atoms of 0.98 |e|, indicates that ... continued below

Physical Description

PDF-file: 19 pages; size: 0.3 Mbytes

Creation Information

Liu, C S; Hou, C J; Kioussis, N; Demos, S & Radousky, H February 18, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present first-principles total-energy density-functional theory electronic structure calculations for the neutral and charge states of an oxygen vacancy in KH{sub 2}PO{sub 4} (KDP). Even though the overall DOS profiles for the defective KDP are quite similar to those of the perfect KDP, the oxygen vacancy in the neutral and +1 charge states induces defect states in the band gap. For the neutral oxygen vacancy, the gap states are occupied by two electrons. The difference between the integral of the total density of states (DOS) and the sum of the DOS projected on the atoms of 0.98 |e|, indicates that one of the two electrons resulting from the removal of the oxygen atom is trapped in the vacancy, while the other tends to delocalize in the neighboring atoms. For the +1 charge oxygen vacancy, the addition of the hole reduces the occupation of the filled gap-states in the neutral case from two to one electron and produces new empty states in the gap. The new empty gap states are very close to the highest occupied states, leading to a dramatic decrease of the band gap. The difference between the integral of the total DOS and the sum of the DOS projected on the atoms is 0.56 |e|, which implies that more than 56% of the redundant electron is trapped in the oxygen vacancy, and 44% spreads over the neighboring atoms. In sharp contrast, no defect states appear in the energy gap for the +2 charge O vacancy. Thus, the addition of the two holes completely compensates the two redundant electrons, and removes in turn the occupied gap states in the neutral case.

Physical Description

PDF-file: 19 pages; size: 0.3 Mbytes

Source

  • Journal Name: Physical Review B; Journal Volume: 72; Journal Issue: 13

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-210039
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 883829
  • Archival Resource Key: ark:/67531/metadc892357

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 18, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 8, 2016, 3:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Liu, C S; Hou, C J; Kioussis, N; Demos, S & Radousky, H. Electronic Structure Calculations of an Oxygen Vacancy in KH2PO4, article, February 18, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc892357/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.