Smooth Light Curves from a Bumpy Ride: Relativistic Blast Wave Encounters a Density Jump

PDF Version Also Available for Download.

Description

Some gamma-ray burst (GRB) afterglow light curves show significant variability, which often includes episodes of rebrightening. Such temporal variability had been attributed in several cases to large fluctuations in the external density, or density ''bumps''. Here we carefully examine the effect of a sharp increase in the external density on the afterglow light curve by considering, for the first time, a full treatment of both the hydrodynamic evolution and the radiation in this scenario. To this end we develop a semi-analytic model for the light curve and carry out several elaborate numerical simulations using a one dimensional hydrodynamic code together ... continued below

Physical Description

16 pages

Creation Information

Nakar, Ehud; /Caltech; Granot, Jonathan & /KIPAC, Menlo Park June 6, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Some gamma-ray burst (GRB) afterglow light curves show significant variability, which often includes episodes of rebrightening. Such temporal variability had been attributed in several cases to large fluctuations in the external density, or density ''bumps''. Here we carefully examine the effect of a sharp increase in the external density on the afterglow light curve by considering, for the first time, a full treatment of both the hydrodynamic evolution and the radiation in this scenario. To this end we develop a semi-analytic model for the light curve and carry out several elaborate numerical simulations using a one dimensional hydrodynamic code together with a synchrotron radiation code. Two spherically symmetric cases are explored in detail--a density jump in a uniform external medium, and a wind termination shock. The effect of density clumps is also constrained. Contrary to previous works, we find that even a very sharp (modeled as a step function) and large (by a factor of a >> 1) increase in the external density does not produce sharp features in the light curve, and cannot account for significant temporal variability in GRB afterglows. For a wind termination shock, the light curve smoothly transitions between the asymptotic power laws over about one decade in time, and there is no rebrightening in the optical or X-rays that could serve as a clear observational signature. For a sharp jump in a uniform density profile we find that the maximal deviation {Delta}{alpha}{sub max} of the temporal decay index {alpha} from its asymptotic value (at early and late times), is bounded (e.g, {Delta}{alpha}{sub max} < 0.4 for {alpha} = 10); {Delta}{alpha}{sub max} slowly increases with {alpha}, converging to {Delta}{alpha}{sub max} {approx} 1 at very large {alpha} values. Therefore, no optical rebrightening is expected in this case as well. In the X-rays, while the asymptotic flux is unaffected by the density jump, the fluctuations in {alpha} are found to be comparable to those in the optical. Finally, we discuss the implications of our results for the origin of the observed fluctuations in several GRB afterglows.

Physical Description

16 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11889
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 883272
  • Archival Resource Key: ark:/67531/metadc892316

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 6, 2006

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 9, 2016, 8:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nakar, Ehud; /Caltech; Granot, Jonathan & /KIPAC, Menlo Park. Smooth Light Curves from a Bumpy Ride: Relativistic Blast Wave Encounters a Density Jump, article, June 6, 2006; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc892316/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.