Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

PDF Version Also Available for Download.

Description

The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the ... continued below

Creation Information

Hill, Wayne & Demler, Roger June 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Foster-Miller
    Publisher Info: Foster-Miller, Inc.
    Place of Publication: United States

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized coal burners. The benefits sought through the use of this system include improvements to a plant's feed utilization rate as well as the overall efficiency of a pulverized coal combustion system.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FC26-03NT41846
  • DOI: 10.2172/886735 | External Link
  • Office of Scientific & Technical Information Report Number: 886735
  • Archival Resource Key: ark:/67531/metadc892310

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2004

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • April 27, 2018, 12:55 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hill, Wayne & Demler, Roger. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation, report, June 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc892310/: accessed November 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.