Laser-Induced Damage in DKDP Crystals under Simultaneous Exposure to Laser Harmonics

PDF Version Also Available for Download.

Description

While KDP and DKDP crystals remain the only viable solution for frequency conversion in large aperture laser systems in the foreseeable future, our understanding of damage behavior in the presence of multiple colors is very limited. Such conditions exist during normal operation where, for third harmonic generation, 1{omega}, 2{omega} and 3{omega} components are present with different energy ratios as they propagate inside the crystal. The objective of this work is to shed light into the damage behavior of frequency conversion crystals during operational conditions as well as probe the fundamental mechanisms of damage initiation. We have performed a series of ... continued below

Physical Description

PDF-file: 8 pages; size: 2.8 Mbytes

Creation Information

Negres, R A; DeMange, P; Radousky, H B & Demos, S G October 28, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

While KDP and DKDP crystals remain the only viable solution for frequency conversion in large aperture laser systems in the foreseeable future, our understanding of damage behavior in the presence of multiple colors is very limited. Such conditions exist during normal operation where, for third harmonic generation, 1{omega}, 2{omega} and 3{omega} components are present with different energy ratios as they propagate inside the crystal. The objective of this work is to shed light into the damage behavior of frequency conversion crystals during operational conditions as well as probe the fundamental mechanisms of damage initiation. We have performed a series of experiments to quantify the damage performance of pristine (unconditioned) DKDP material under simultaneous exposure to 2{omega} and 3{omega} laser pulses from a 3-ns Nd:YAG laser system as a function of the laser influences at each frequency. Results show that simultaneous dual wavelength exposure leads to a much larger damage density as compared to the total damage resulting from separate exposure at each wavelength. Furthermore, under such excitation conditions, the damage performance is directly related to and can be predicted from the damage behavior of the crystal at each wavelength separately while the mechanism and type of defects responsible for damage initiation are shown to be the same at both 2{omega} and 3{omega} excitation.

Physical Description

PDF-file: 8 pages; size: 2.8 Mbytes

Source

  • Presented at: Boulder Damage Symposium, Boulder, CO, United States, Sep 19 - Sep 21, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-216804
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 883573
  • Archival Resource Key: ark:/67531/metadc892058

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 28, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 5, 2016, 10:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Negres, R A; DeMange, P; Radousky, H B & Demos, S G. Laser-Induced Damage in DKDP Crystals under Simultaneous Exposure to Laser Harmonics, article, October 28, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc892058/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.