Seeing the Universe in a Grain of Dust

PDF Version Also Available for Download.

Description

Imagine traveling halfway to Jupiter--3.2 billion kilometers--for a small handful of comet dust. That's the mission for the National Aeronautics and Space Administration's (NASA's) Stardust spacecraft launched on February 7, 1999. This past January, Stardust flew by Comet Wild 2's nucleus and through a halo of gases and dust at the comet's head, collecting cometary dust particles released from the surface just hours before. In 2006, the spacecraft will deliver the less than 1 milligram of particles to Earth. A Lawrence Livermore team is perfecting ways to extract and analyze the tiny particles using its new focused-ion-beam instrument and SuperSTEM, ... continued below

Physical Description

6 p. (0.4 MB)

Creation Information

Hazi, A September 20, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Imagine traveling halfway to Jupiter--3.2 billion kilometers--for a small handful of comet dust. That's the mission for the National Aeronautics and Space Administration's (NASA's) Stardust spacecraft launched on February 7, 1999. This past January, Stardust flew by Comet Wild 2's nucleus and through a halo of gases and dust at the comet's head, collecting cometary dust particles released from the surface just hours before. In 2006, the spacecraft will deliver the less than 1 milligram of particles to Earth. A Lawrence Livermore team is perfecting ways to extract and analyze the tiny particles using its new focused-ion-beam instrument and SuperSTEM, a scanning transmission electron microscope. Stardust is the first NASA space mission dedicated solely to collecting comet dust and will be the first to return material from a comet to Earth. Comets are the oldest and most primitive bodies in the solar system. They are formed from frozen gas, water, and interstellar dust and may have brought water to Earth, making life possible. Wild 2--pronounced ''Vilt 2'' after the name of its Swiss discoverer--was formed with the Sun and the rest of the solar system 4.5 billion years ago. For billions of years, it has circled the Sun in the Kuiper Belt, a region beyond the orbit of Neptune. Scientists think comets from this region have escaped the warming, vaporization, and collisions that have altered matter in the inner solar system. Unlike Halley's Comet, which has been altered as a result of orbiting the Sun for a long time, Wild 2's pristine composition is expected to offer a rich source of information about the solar system's potential building blocks. As the 5-meter-long Stardust spacecraft traveled through Wild 2's dust and gas cloud, to within about 100 kilometers of the comet's nucleus, particles were captured in the spacecraft's collector grid. The 1,000-square-centimeter grid is filled with the silica-based material aerogel, whose lightness minimizes damage to the grains as they encounter the spacecraft at a speed of about 21,000 kilometers per hour--or six times faster than a bullet. In the late 1980s, Livermore scientists developed an aerogel made up of 99 percent air, making it ideal for NASA projects. Mission planners expect to have collected more than 1,000 grains between 2 to 5 nanometers in diameter. Most of the grains will be heterogeneous aggregates of carbonaceous matter, glass, and crystals.

Physical Description

6 p. (0.4 MB)

Notes

PDF-file: 6 pages; size: 0.4 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-215559
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/883604 | External Link
  • Office of Scientific & Technical Information Report Number: 883604
  • Archival Resource Key: ark:/67531/metadc892010

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 20, 2005

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • April 17, 2017, 12:21 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hazi, A. Seeing the Universe in a Grain of Dust, report, September 20, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc892010/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.