An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

PDF Version Also Available for Download.

Description

This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration ... continued below

Creation Information

Korsah, K July 7, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output concentration is less than the calculated output of the generator alone but can be calibrated as a system by using coulometric titration of gas samples collected with impingers. (3) The calibrated Kintek system output concentration is reproducible even after having been disassembled and moved and reassembled. (4) The uncertainty of the reference gas concentration generated by the Kintek system is less than half the uncertainty of the Zellweger Analytics' (ZA) reference gas concentration and can be easily lowered to one third or less of the ZA method by using lower-uncertainty flow rate or total flow measuring instruments. (5) The largest sources of uncertainty in the current ORNL calibration system are the permeation rate of the permeation tubes and the flow rate of the impinger sampling pump used to collect gas samples for calibrating the Kintek system. Upgrading the measurement equipment, as stated in (4), can reduce both of these. (6) The coulometric titration technique can be used to periodically assess the performance of the Kintek system and determine a suitable recalibration interval. (7) The Kintek system has been used to calibrate two MDA 7100s and an Interscan 4187 in less than one workday. The system can be upgraded (e.g., by automating it) to provide more calibrations per day. (8) The humidity of both the reference gas and the environment of the Chemcassette affect the MDA 7100 hydrazine detector's readings. However, ORNL believes that the environmental effect is less significant than the effect of the reference gas humidity. (9) The ORNL calibration method based on the Kintek 491 M-B gas standard can correct for the effect of the humidity of the reference gas to produce the same calibration as that of ZA's. Zellweger Analytics calibrations are typically performed at 45%-55% relative humidity. (10) Tests using the Interscan 4187 showed that the instrument was not accurate in its lower (0-100 ppb) range. Subsequent discussions with Kennedy Space Center (KSC) personnel also indicated that the Interscan units were not reproducible when new sensors were used. KSC had discovered that the Interscan units read incorrectly on the low range because of the presence of carbon dioxide. ORNL did not test the carbon dioxide effect, but it was found that the units did not read zero when a test gas containing no hydrazine was sampled. According to the KSC personnel that ORNL had these discussions with, NASA is phasing out the use of these Interscan detectors.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2003/157
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/885782 | External Link
  • Office of Scientific & Technical Information Report Number: 885782
  • Archival Resource Key: ark:/67531/metadc891792

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 7, 2003

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 7, 2016, 3:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 20

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Korsah, K. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force, report, July 7, 2003; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc891792/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.