Density Changes in the Optimized CSSX Solvent System

PDF Version Also Available for Download.

Description

Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time ... continued below

Creation Information

Lee, D.D. November 25, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time determination and adjustment of the solvent composition. In evaporation experiments, virgin solvent was subjected to evaporation under quiescent conditions at 25, 35, and 45 C with continuously flowing dry air passing over the surface of the solvent. Density and viscosity were measured periodically, and chemical analysis was performed on the solvent samples. Chemical interaction tests were completed to determine if any chemical reaction takes place over extended contact time that changes the composition and/or physical properties. Solvent and simulant, solvent and strip solution, and solvent and wash solution were contacted continuously in agitated flasks. They were periodically sampled and the density measured (viscosity was also measured on some samples) and then submitted to the Chemical Sciences Division of Oak Ridge National Laboratory for analysis by nuclear magnetic resonance (NMR) spectrometry and high-performance liquid chromatography (HPLC) using the virgin solvent as the baseline. Chemical interaction tests showed that solvent densities and viscosities did not change appreciably during contact with simulant, strip, or wash solution. No effects on density and viscosity and no chemical changes in the solvent were noted within experimental limits. Evaporation test results showed that all solvents were evaporated to densities of greater than 0.90 g/cm{sup 3}. Viscosities increased from 3.5 to >6.5 cP as the densities increased. NMR and HPLC data indicate that diluent loss is the primary reason for density increase and that the ratio of BOBCalixC6 (referred to as calix) to Cs-7SB remained almost constant. Density and viscosity vary linearly with the loss of diluent and the increase in Cs-7SB concentration. Solvent viscosity and density are both sensitive indicators of the loss of diluent, especially when such loss is greater than 10%. However, density is more reliable at low values for diluent loss. The ratio of Cs-7SB to calix appears relatively constant during evaporation to losses of more than 50% of the diluent. A simple density model accurately predicts the composition of the solvent when density is known. Density and viscosity increases can affect the throughput in the centrifugal contactors and, at the extreme, can cause complete loss of flow. The distribution coefficient can also increase, especially in the strip stage, causing the loss of the ability to strip extracted cesium from the solvent. These effects can be addressed by internal changes to the contactor and by adding additional stripping stages in processing. However, these changes are extremely difficult under remote operation and maintenance restrictions.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2002/204
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/885674 | External Link
  • Office of Scientific & Technical Information Report Number: 885674
  • Archival Resource Key: ark:/67531/metadc891776

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 25, 2002

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 9, 2016, 7:55 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, D.D. Density Changes in the Optimized CSSX Solvent System, report, November 25, 2002; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc891776/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.