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Abtract 

 

We have developed an algorithm that extends the possible size-parameter range for the 

calculation of plane-wave light scattering from infinite homogeneous circular cylinders 

using a Mie-type analysis.  Our algorithm is based on the calculation of the ratios of 

Bessel functions instead of calculating the Bessel functions or their logarithmic 

derivatives directly.  We have found that this algorithm agrees with existing methods 

(when those methods converge).  We have also found that our algorithm converges in 

cases of very large size parameters, in which case other algorithms often do not. 

 

 

1. Introduction 

 

X-ray diffraction tomography has proven to be a powerful technique to determine the 

complex refractive-index distribution of weakly scattering objects [1-3].  Common test 

objects for diffraction tomography are cylindrically-shaped particles or cylindrical wires 



[4] with diameters that are several orders of magnitude larger than the wavelength of the 

incident light.  For verification purposes, it is often desirable to directly compare the 

measured scattering function or the scattering function calculated with other approximate 

methods to an exact analytical solution.  Due to numerical instabilities, in the past these 

calculations have turned out to be challenging or impossible for large diameter-to-

wavelength ratios.  In this paper we present a new numerically-stable algorithm that 

enables one to perform these calculations on large cylinders. 

 

An exact solution to the problem of scattering of electromagnectic plane waves from 

infinite homogeneous circular cylinders can be obtained using a Mie-type analysis.  This 

has been described by numerous authors, see for example References [5-9].  The 

numerical evaluation of the involved equations is challenging, especially when cylinders 

are considered that have diameters that are much larger than the wavelength of the 

incident light.  Some methods to perform these calculations in a numerically stable way 

have been suggested, for example by Bohren and Huffman [5] and Barber and Hill [6].  

The problem of light scattering from spheres instead of cylinders has received much more 

attention [10-14], and quite sophisticated methods have been developed that allow the 

precise calculation of the  scattered field even for large spheres with refractive indices 

with a large real or imaginary part.  We have analyzed the methods suggested for spheres, 

and applied and extended them to circular cylinders.  We have developed a numerically 

robust method for the calculation of scattering from cylinders even when the cylinder is 

large or has a large refractive index, i.e. for a parameter space in which other algorithms 

have failed.   



 

In the following we will review how the Mie formalism has been applied to infinite 

circular cylinders, and which approaches have been taken to solve the resulting equations 

numerically.  We then proceed to describe the new algorithm that we developed that is 

based on the ratios of Bessel functions, and how that algorithm can be implemented.  

Finally, we compare the new algorithm with several other published methods. 

 

 

2. Review of the Mie formalism applied to infinite circular cylinders 

 

We follow the notation introduced in reference [5] and consider an infinite homogeneous 

circular cylinder of radius a  that is oriented along zê illuminated by a plane 

homogeneous wave of amplitude 0E  propagating in direction iê  in the xê - zê  plane.  The 

geometry is shown in Figure 1.  Let ζ  be the angle between the incident wave and the 

cylinder axis, and let m  be the complex refractive index of the cylinder relative to that of 

the surrounding medium that is assumed to be loss-less.  If the incident electric field is 

parallel to the xê - zê  plane, the scattered electric field can be written as 
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λπ /2=k , λ  the wavelength of the incident light, r , z , and φ  the usual cylindrical 

coordinates, and nIa , nIb , nIIa , and nIIb  are coefficients defined in Reference [5].  It can 

be shown that nInI aa −=− , nInI bb =− , 00 =Ia , nIInII aa =− , nIInII bb −=− , 00 =IIb , and 

nIInI ba −=− .  The scattering and extinction efficiencies defined as the ratios of the cross 

sections and the geometrical area ( aL2  where L  is the cylinder length) of the particle are 

given by 
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respectively.   

 

If the incident electric field is perpendicular to the xê - zê  plane, the scattered electric 

field can be written as  
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The scattering and extinction coefficients in this case are given by 
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respectively.  Within this formalism, the problem of calculating the scattered electric field 

and the scattering and extinction coefficients is essentially reduced to evaluating the 

coefficients nIa , nIb , nIIa , and nIIb .   

 

Convergence of Equations (1) through (6) is obtained as a sum over a finite number of 

terms cn .  In extensive calculations [13] for spheres it was found that cn  is given by  

 

( )205.4 3/1)1( ++= xxRoundnc ,      (7) 

 

where the Round function indicates the integer closest to the real argument.  A similar 

value has been used for the calculations of cylinders in References [5] and [15].  Barber 

et al. [16] have been found that in certain situations the sums in Equations (1) through (6) 

only converge if cn  is extended to  

 

( )( )( )mxxxRoundnc ,205.4max 3/1)2( ++= ,     (8) 

 

for example if internal or scattered field quantities at morphology-dependent resonances 

of the cylinder are to be calculated. 

 

 



3. Description of existing algorithms 

 

Calculation of the coefficients nIa , nIb , nIIa , and nIIb   generally requires the calculation 

of the Bessel functions of the first kind, ( )ηnJ  and ( )ξnJ , their derivatives with respect 

to the argument, ( )η'
nJ  and ( )ξ'

nJ , as well as the Hankel functions ( )ξ)1(
nH  and their 

derivatives with respect to the argument, ( )ξ)'1(
nH .  Here ζξ sinx= ,  

ζη 22 cos−= mx , and kax =  is the size parameter. 

 

The evaluation of ( )ξnJ  and ( )ξ)1(
nH  has been considered as numerically not problematic 

since ξ  is real, and standard recurrence method in the direction of decreasing n  can be 

carried out [17].  We have found that this is true for )1(
cnn ≤ , but for )2()1(

cc nnn ≤≤ , ( )ξnJ  

can become very small and the algorithm sometimes become unstable.  This is discussed 

in more detail below.  If ( )ξnJ  can be evaluated, the calculation of 

( ) ( ) ( )ξξξ nnn iYJH +=)1(  is less problematic since the evaluation of the Bessel functions 

of the second kind ( )ξnY  is numerically stable. 

 

The parameter η , however, can be complex, so that the Bessel functions generally also 

need to be evaluated for complex arguments.  This is difficult when the imaginary part of 

η  is very large, since for a complex number z  with ∞→z , [17] 
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and ( )zJn  grows exponentially due to the cos term.  To address this issue, it has been 

suggested to reformulate the problem using the logarithmic derivative 

( ) ( ) ( )ηηη nnn JJD /'= , which is well behaved for large { }ηIm .  This is similar to 

calculating the logarithmic derivative nnnA ψψ /'=  of the Riccati-Bessel functions nψ  as 

it has been suggested for scattering from spheres.  Du [14] has discussed that the 

calculation of the logarithmic derivative is generally complicated and even requires a 

separate treatment for small particles.  He and others [18-19] have suggested an 

alternative, numerically stable approach of reformulating the problem in terms of ratios 

of the Riccati-Bessel functions, nn ψψ /1− .   

 

 

4. Formulation of the new algorithm 

 

To address the numerical problems described in the previous Section we apply the 

approach suggested by Du [14] for spheres to cylinders.  We have extended his approach 

and reformulate the problem in terms of ratios of the Bessel functions defined as 
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Since ( ) ( ) znzDzr nn /+= , as ( )zDn , ( )zrn  is well behaved for large arguments. A 

similar same argument can be made for ( )zsn .  Since ( ) ( ) ( ) znzJzJzJ nnn /211 =+ +−  and 

( ) ( ) ( ) znzYzYzY nnn /211 =+ +− , we can calculate ( )zrn  and ( )zsn  using the recurrence 

relations 
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In our algorithm ( )ztn  needs only be evaluated for real arguments.  ( )ztn  is well-behaved 

for zn >  but can become very large for zn << .  Instead of evaluating ( )ztn  directly, we 

calculate ( )( )ztnln  and the sign of ( )ztn  separately using the recurrence relations 
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respectively.  Here the ( )zsgn  is 1 for 0>z  and -1 for 0<z . 

 



The coefficients for the scattered electric field can then be written as  
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5. Numerical implementation of the new algorithm  

 

Du [14] derived an estimate of the order of magnitude of the Bessel functions based on 

the Kapteyn inequality [20].  The number of orders between the moduli of ( )zJ0  and 

( )zJn  is approximately 
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If ( )zJn  is calculated by upward recurrence, which means that higher orders in n  are 

generated from lower orders, ( )zln  is approximately the number of lost significant digits 

[14].  The downward recurrence of ( )zJn  is numerically stable, and ( )zln  can again be 

used to estimate the number of significant digits added.  The starting point for the 

downward recurrence mxn  is chosen such that ( ) ( )zlzl
cmx nn −  is equal or larger than the 



desired number of digits in ( )zJn .  A similar analysis holds for ( )zrn , for which we start 

the downward recurrence using Equation (13) with ( ) znzr mxnmx
/)12( +=  [14].   

 

Since the upward recurrence of ( )zYn  is numerically stable [5], we also calculate ( )zsn  

by upward recurrence using Equation (14).  The algorithm is started by calculating ( )zs0  

explicitly using the methods described in Reference [5].   

 

Given ( )zrn  and ( )zsn , ( )( )ztnln  and ( )( )ztnsgn  can be calculated using Equations (15) 

and (16).  Again we start the algorithm by calculating ( )zt0  explicitly using the methods 

described in Reference [5].  For ( ) ( ) ( )ξξξ nnn tsr <</ , we approximated Equations (25) 

and (26) by 
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with which all terms in Equations (17) through (20) can be evaluated.  For large ( )ξnt  

the calculation of nP  using Equation (27) can be difficult but that cannot be avoided since 

the magnitude of this term is directly related to the magnitude of the inverse of 

coefficients nIa , nIb , nIIa , and nIIb .  

 



 

6. Comparison with existing algorithms 

 

For the case of normal incidence, Barber and Hill [6] and Bohren and Huffman [5] 

published algorithms to calculate the coefficients nIa , nIb , nIIa , and nIIb .  Since our 

algorithm includes the special case of illumination at normal incidence when we set 

o90=ζ , we can compare the results of these algorithms directly to ours.  Mackowski 

[15] implemented the algorithm described in reference [5] for illumination at oblique 

incidence but did not carry out extensive numerical optimizations.  In the following we 

also compare the results from this algorithm to ours to assure that it gives correct results 

for o90≠ζ . 

 

We found it convenient to compare the scattering efficiency IscaQ ,  as a function of the 

size parameter x .  Figures 2 (a) through (d) show IscaQ ,  for a size parameter ranging 

from 10 to 11, calculated using the different algorithms.  We assumed illumination at 

normal incidence ( o90=ζ ) and 5.1=m .  Equation (2) was evaluated using terms up to 

)1(
cc nn = .  We found that our algorithm agrees very well with the other published 

algorithms.  As shown in Figure 3, including higher order terms in the calculations for 

example by using )2(
cc nn =  does not alter the results significantly in this case. 

 

We now consider a larger size parameter x  ranging from 1000 to 1001.  Figure 4 (a) 

shows IscaQ ,  as a function of the size parameter x  calculated using the algorithm 



described in this paper with )2(
cc nn = .  Figure 4 (b) shows IscaQ ,  calculated using the 

algorithm described by Bohren and Huffman [5] with summation cutoffs )1(
cn , )2(

cn , and  
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We found that for the Bohren and Huffman algorithm, )3(
cn  summation terms in Equation 

(2) are necessary to reach true convergence, which is primarily due to the lack of 

convergence of the logarithmic derivative ( )ηnD .  In Table I we compare the calculated 

value of ( )15000D  with the calculated values for different summation cutoffs cn .  The 

algorithm by Bohren and Huffman [5] only converges for )3(
cc nn = .  The code we 

propose converges already with )2(
cc nn = . 

 

If we consider even larger cylinders with a size parameter x  ranging from 5000 to 5001, 

the value of our approach of using the ratios of Bessel functions becomes even clearer.   

Figure 5 (a) shows IscaQ ,  as a function of the size parameter x  calculated using the 

algorithm described in this paper with )2(
cc nn = .  Figure 5 (b) shows IscaQ ,  calculated 

using the algorithm described by Bohren and Huffman algorithm [5] with )1(
cc nn = , 

which is not sufficient to achieve convergence.  We found that the latter algorithm is not 

able to calculate the Bessel functions of the first kind for )2(
cc nn =  or )3(

cc nn =  since the 

numbers that are encountered are too small to be represented by double-precision 

complex values. 



 

To verify that the algorithm described in this paper also delivers correct results for 

illumination at oblique incidence ( o90≠ζ ), we calculated IscaQ ,  as a function of the size 

parameter x  for o30=ζ , and compared this with values obtained from the algorithm 

from Reference [15].  As can be seen in Figure 6, we obtained very good agreement.  

Numerical instabilities limits the algorithm from Reference [15] to relatively small size 

parameters, whereas for our algorithm these restrictions are much more relaxed. 

 

 

7. Summary and Conclusions 

 

A Mie-type analysis of the problem of the scattering of a plane-wave from an infinite 

homogeneous circular cylinder requires the calculation of the coefficients nIa , nIb , nIIa , 

and nIIb .  In this paper we have presented a new algorithm to calculate these parameters 

based on the calculation of the ratios of Bessel functions instead of calculating the Bessel 

functions or their logarithmic derivatives directly.  We have found that this algorithm 

agrees with existing algorithms for light illuminating the cylinder at normal and oblique 

incidence, given that the existing algorithms converge.  We have further shown that our 

algorithm also converges in cases of very large cylinder diameter to wavelength ratios, 

for which other algorithms sometimes do not. 
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Table Captions 

 

Table I: The logarithmic derivative ( )15000D  calculated by the algorithm described by 

Bohren and Huffman [5] and the actual value for different summation cutoffs cn . 



 

Tables 

 

 

 

 

 1041)1( == cc nn 1500)2( == cc nn 1562)3( == cc nn  actual value 

( )15000D  -0.8794 -0.8794 -0.8005 -0.8005 

 

Table I 



Figure Captions 

 

Figure 1: Geometry of an inifinite cylinder at oblique illumination by a plane wave. 

 

Figure 2: Scattering efficiency IscaQ ,  for incident light with the electric field is parallel to 

the xê - zê  plane as a function of size parameter calculated using the algorithms (a) 

described in this paper, (b) by Bohren and Huffman, (c) by Mackowski, and (d) by 

Barber and Hill.  The calculations used 1000 points. 

 

Figure 3: Comparison of )1(
cc nn =  and )2(

cc nn = .  Scattering efficiency IscaQ ,  as a function 

of size parameter using the algorithm described in this paper.  The calculations used 1000 

points. 

 

Figure 4: Scattering efficiency IscaQ ,  as a function of size parameter calculated using the 

algorithms (a) described in this paper and (b) by Bohren and Huffman.  The calculations 

used 10000 points.  For the results shown in (b) we used different summation cutoffs cn .  

The curves for )1(
cc nn =  and )2(

cc nn =  are identical.  The peaks are due to morphology-

dependent resonances of the cylinder. 

 

Figure 5: Scattering efficiency IscaQ ,  as a function of size parameter calculated using the 

algorithms (i) described in this paper with )2(
cc nn =  and (ii) by Bohren and Huffman with 

)1(
cc nn = .  The calculations used 10000 points.   



 

Figure 6: Scattering efficiency IscaQ ,  as a function of size parameter calculated using the 

algorithms (a) described in this paper and (b) from Reference [Mack] for an incident 

angle of o30=ζ . 
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Figure 2 (Hau-Riege) 
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Figure 3 (Hau-Riege) 
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Figure 4 (Hau-Riege) 
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Figure 5 (Hau-Riege) 
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Figure 6 (Hau-Riege) 

 
 


