AN ANTI-SYMMETRIC LATTICE FOR HIGH-INTENSITY RAPID CYCLING SYNCHROTRONS.

PDF Version Also Available for Download.

Description

Rapid cycling synchrotrons (RCSs) are used in many high power facilities like spallation neutron sources and proton drivers to accumulate and accelerate proton beams. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, injection and extraction sections often need to reside in dispersion-free regions to avoid couplings; sizeable drift space is needed to house the RF accelerating cavities; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice satisfying these ... continued below

Physical Description

5 pages

Creation Information

WEI, J.; WANG, S.; FANG, S.-X.; LEE, Y.Y.; MACHIDA, S.; PRIOR, C. et al. June 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Rapid cycling synchrotrons (RCSs) are used in many high power facilities like spallation neutron sources and proton drivers to accumulate and accelerate proton beams. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, injection and extraction sections often need to reside in dispersion-free regions to avoid couplings; sizeable drift space is needed to house the RF accelerating cavities; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice satisfying these needs. The lattice contains a drift created by a missing dipole near the peak dispersion to facilitate longitudinal collimation. The compact FODO arc allows easy orbit, tune, coupling, and chromatic correction. The doublets provide long uninterrupted straights. The four-fold lattice symmetry separates injection, extraction, and collimation to different straights. This lattice is adopted for the China Spallation Neutron Source (CSNS) synchrotron [1].

Physical Description

5 pages

Source

  • 10TH BIENNIAL EUROPEAN PARTICLE ACCELERATOR CONFERENCE (EPAC); EDINBURGH, UK; 20060626 through 20060630

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--75481-2006-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 885012
  • Archival Resource Key: ark:/67531/metadc891546

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 23, 2006

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 12, 2016, 8:08 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

WEI, J.; WANG, S.; FANG, S.-X.; LEE, Y.Y.; MACHIDA, S.; PRIOR, C. et al. AN ANTI-SYMMETRIC LATTICE FOR HIGH-INTENSITY RAPID CYCLING SYNCHROTRONS., article, June 23, 2006; [Upton, New York]. (digital.library.unt.edu/ark:/67531/metadc891546/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.