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Abstract—Many industrial facilities utilize pressure control
gradients to prevent migration of hazardous species from
containment areas to occupied zones, often using
Proportional-Integral-Derivative (PID) control systems. When
operators rebalance the facility, variation from the desired
gradients can occur and the operating conditions can change
enough that the PID parameters are no longer adequate to
maintain a stable system. As the goal of the ventilation control
system is to optimize the pressure gradients and associated
flows for the facility, Linear Quadratic Tracking (LQT) is a
method that provides a time-based approach to guiding
facility interactions. However, LQT methods are susceptible
to modeling and measurement errors, and therefore the
additional use of soft computing methods is proposed for
implementation to account for these errors and nonlinearities.

I. INTRODUCTION

HE control of pressure gradients in industrial facilities,

such as those found in the Department of Energy
(DOE) complex, are key to preventing the migration of
hazardous species from containment areas to normally
occupied areas. When hatches or doors are opened to
access these areas, in some cases for an extended period,
the ventilation control system is expected to respond
promptly to maintain the required pressure gradients. When
the disturbance is maintained for extended periods, operator
involvement is often required to rebalance a large portion
of the facility to achieve the required balance. Since these
control systems often use individual Proportional-Integral-
Derivative (PID) or PI controllers, there is no consideration
given to the obvious interactions that occur across the
facility. To account for these interactions, a control method
must provide an optimal solution to the model of a Heating,
Ventilation and Air Conditioning (HVAC) plant. The LQT
method provides such a solution to optimally track a time-
based reference, given that the reference is known and that
the model is well known [1], [2]. As the ventilation profiles
and pressure gradients through an industrial facility can be
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quite complex, the presence of modeling and measurement
errors must be considered in the final control method.

Soft computing methods provide an avenue to
incorporate variations in the model compared to plant
operation and the ability to closely model nonlinear
situations [3]-[6]. With the LQT method, simulation
techniques are available that allow the simple incorporation
of any plant model in state space form [7]. However, the
implementation of a controller would normally involve the
storing of data in the form of a function or lookup table. If
multiple tracking references are desired for an individual
controller, multiple functions or lookup tables would be
required that are activated based on conditions. With a
neural network, the data for multiple tracking references
can be captured through initial training. With the addition
of an integral controller at the local control variable, steady-
state offset can be achieved and corrected for variations
between the model and plant operations. This design is
beneficial in that the model for the LQT can remain simple
while still providing an optimized path for the controller to
follow.

Soft computing methods also provide for consideration of
operator experience. When a ventilation system requires
rebalance by an operator, the most experienced will provide
the smoothest transition of the plant. As the condition of
the plant that mandates the rebalance can change, i.e., doors
or hatches that are maintained open in the building can
vary, a rule base formed from operator experience is key to
controller implementation. This experience can be captured
in a fuzzy logic predictor of the most effective tracking
references to implement in desired areas of the plant,
depending on desired setpoint.

The resulting hybrid controller uses a linear control
method, the LQT, and nonlinear methods, neural network
and fuzzy logic, to provide an optimized tracking of an
HVAC plant as depicted in the flow diagram in Figure 1.

II. HYBRID CONTROLLER DESIGN

The block diagram in Fig. 2 represents the hybrid
controller that is considered for controlling an HVAC
system. The design involves the development of a global
LQT controller, training of a neural network with the LQT

2245



Supervisory Control Advanced Optimal Design with Constraints ‘

sC
1 > 1y }
Local Control @ @C >
I5°F
1 inch positive
i —HLO—>
| o B )
i I
(L Air Flow
@O
75°F
1 inch positive
|
----- ©
L
70°F 70°F . 75°F
Linch positive 1inch positive 2 inches vacuum

Fig. 1. Supervisory HVAC Plant Control

data, development of global fuzzy-based track reference,
and final combination with an integrator for local control.

A. LOT

The development of a LQT controller for maintaining
pressure gradients starts with the development of a model
for the HVAC system. Consider the 3-cell ventilation
situation depicted in Fig. 1. A simple state-space model for
pressure and flow was developed using a differential form
of the ideal gas law [7]-[9].

Assuming little change in temperature, then linearizing
for each cell:

(1) = Kax(t) + Kou(t)

where:
X(t) - state vector, pressure,
u(t) - input vector, flow,
K, K, - constants, and

For the overall 3-cell system:
x(t) = Kux(t) + Kouo(t)

where:
u, - linear combination of cell inputs
K., K, - constants

Local LOT
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Local Integral .
_ Controller > Local Plant

Fuzzy-Based
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Error From Desired
Setpoint, Temperature and|

Fig. 2. HVAC Hybrid Controller Design

Although only pressure has been mentioned as it is the
primary state of concern in this paper, temperature must
also be considered in the final hybrid controller. Wide
swings in the temperature can cause discomfort and
unacceptable working conditions for those that enter
containment areas for work, especially considering the fact
that those persons are often wearing personal protective
equipment (PPE). While many works have developed
models for temperature control, the application of
constrains for temperature in this work will be included in
the fuzzy-based tracking method [2], [10], [11].

The final state-space model for the ventilation system
appears as follows:

x| [-19280 0 0 0 x1 5427 0 0

1
X2 0 -19280 O 0 X2 N 0 5427 0 u2
3| 0 0 -19280 O X3 0 0 5427 !

u3
x4 0 0 0 -57840 | x4 | |5427 5427 5427

)

yi] [1000]x
y2 0100]x2
y3 00103
| y4] (000 1] x4

The resulting plant model can be used to develop an LQT
controller using recent results by the authors [7]. The
normal state-space representation of a system is provided
below

x(t) = Ax(t)+ Bu(t),

2
y(t) = Cx(t). )

where A, B and C are of appropriate dimensions, and y(z) is
the output vector.

The objective is to minimize the error (e) between a
time-varying tracking reference (z) and the output (y) [1],
[12], [13]. The error vector is therefore defined as

e(t) = z(1) = y(1) = z(1) = Cx(2). 3)

To minimize the tracking error and the expenditure of
control effort, a performance index is chosen as

i
J =%e‘ (tf)FE(tf)+% fie 0 +u @Ruenar. @

10

The LQT Hamiltonian canonical representation takes the

form

. —1

{;*m}: A -BR'B FWH 0 }Z(I) )
A*@®)] |-coc -A |A*@)] |C'Q
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and the LQT Riccati equation as
P(t)=—P(1)A—A'P(t)+ P(t)BR™'B'P(1)-C'QC  (6)

with boundary condition at final time
t: P(tr)=C'(tr)FC(t/), and the LQT vector differential
equation

&(t)=[P(t)BR™'B'-A'1g(t)~ C' Qz(1) (N

with boundary condition at final time #: g(#) = C'(t/) Fz(¥) .
Solutions of these equations for the Riccati coefficient
(P) and vector (g) is dependent on design parameters Q, R
and F defined in the performance index. The resulting
optimal closed loop LQT controller (u) takes the form

u(t)=—R'B'P(t)x(1)+R™'B' g (7). (8)

Using the analytical solution to the matrix differential
Riccati Equation and extending it to the LQT problems
provides a technique for providing the controller and
outputs for a given time period [7]. This technique is
implemented in Matlab®, but is generally applicable.

B. Neural Network Based LOT

The output and controller data can be used as training
data set for a predictive controller. The resulting controller
provides a useful and flexible alternative to developing a
lookup table for the LQT data, which can accept different
reference inputs and provide an LQT output. However, it
must be noted that delays in the neural network
implementation make the resulting controller suboptimal
[14].

With the cause-effect relationship between the inputs and
outputs allows them to be paired, the neural network will be
implemented as local controllers [7], [15]. The neural
network technique used is based on the receding horizon
technique. The neural network model provides a control
output over a specified time horizon, and is built into the
Matlab® control toolbox. The predictions are used by a
numerical optimization program to determine the control
signal that minimizes a given performance criterion shown
below:

N2 Nu
jgvl<yr<r+j>—ym<r+j>>2+pj§1<u'<t+j—1>—u'<r+j—2>> )

where N;, N,, and N, define the horizons over which the
tracking error and the control increments are evaluated. The
u’ variable is the tentative control signal, y, is the desired
response and y, is the network model response. The p
value determines the contribution that the sum of the
squares of the control increments has on the performance
index.

The neural network used is composed of three delayed
inputs, three delayed outputs and three hidden layers.
Figures 3 and 4 depict the input and output data of the LQT
and LQT-trained neural network without disturbances. Note
that the plant outputs are smooth at the beginning and
endpoints, resulting from the neural network optimization
scheme smoothing LQT controller response.

C. Fuzzy Tracking Reference

Normally the reference trajectories that will be
implemented for each control variable would be dependent
solely on the layout of the HVAC flow balance. This
method requires a significant modeling effort to account for
plant nonlinearities that occur during many potential
disturbance conditions. A much easier approach is to
embed knowledge of plant operations into a fuzzy
controller, which will also ensure temperature control is
factored in to the overall control scheme. This is crucial
when plants have an upstream air-handling unit (AHU),
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Fig. 3. 3-cell Plant Outputs with LQT Controller
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Fig. 4. 3-cell Plant Outputs with Neural Net Controller
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which provides a single setpoint for the discharge
temperature that feeds all the cells. For ease of
implementation in Matlab®, a Mamdani scheme is chosen.

The Mamdani fuzzy logic scheme used has three outputs
and six inputs, which includes for each cell, the error
between the pressure and the desired setpoint and the same
for temperature [16]. Trapezoidal membership functions
(MF) were used, with three MF on each of the three
pressure error inputs, five MF on the temperature error
inputs and five MF on the three outputs. This arrangement
allows for creating a rule set that grades the relative
importance of pressure over temperature control, as any
shift in pressure requires correction but small changes in
temperature do not.

The rule set is designed not only to place higher priority
on pressure error, but to also place priority on Cell 1
pressure gradients over that of the other cells. In this way

Table 1. Fuzzy Rule Base

Celll Cell2 Cell3 Celll Celll Celll
Pres. Pres. Pres. Temp. Temp. Temp. Outl Out2 Out3
Err Err Err Err Err Err
Low N/A N/A Ok N/A  N/A ~High N/A NA
Ok N/A  N/A ~Low N/A NA Ok N/A  N/A
High N/A N/A Low N/A NA -~High NA N/A
High N/A N/A Ok N/A  N/A ~Low NA NA
Ok N/A  N/A ~High N/A N/A Ok N/A  N/A
Ok N/A N/A  High NA NA ~Low NA N/A
Low N/A NA Low NA NA High NA NA
High N/A N/A High NA NA Low NA N/A
N/A Low N/A N/A Ok N/A N/A ~High N/A
N/A Ok N/A  N/A ~Low NA NA Ok N/A
N/A Ok N/A N/A Low NA NA -~High N/A
N/A  High N/A N/A Ok N/A  N/A ~Low N/A
N/A Ok N/A  N/A ~High N/A N/A Ok N/A
N/A Ok N/A N/A High NA NA -~Low N/A
N/A  Low N/A NA Low NA NA High NA
N/A  High N/A N/A High NA NA Low NA
N/A  N/A Low NA NA Ok N/A N/A ~High
N/A  N/A Ok N/A  N/A ~Low NA NA Ok
N/A  N/A Ok N/A  NA Low N/A NA -~High
N/A  N/A High NA NA Ok N/A N/A ~Low
N/A  N/A Ok N/A  N/A ~High N/A NA Ok
N/A  N/A Ok N/A  N/A High NA NA ~Low
N/A N/A Low NA NA Low NA NA High
N/A  N/A High NA NA High NA NA Low
Low Low Ok N/A N/A N/A High -~High Ok
Low Ok Low N/A N/A N/A High Ok ~High
High High Ok N/A  NA NA Low ~Low Ok
High Ok High NA NA NA Low Ok ~Low

~High = Somewhat High
~Low= Somewhat Low

the control response to disturbances that affect each cell,
such as the incoming pressure, would affect Cells 2 and 3
more than Cell 1. Table 1 is a listing of the 28 rules used.

D. Integral Controller

An integral controller is placed on each cell to provide a
zero steady-state offset. The contribution of this controller
and the local neural net controller are added. The integral
constant used is the same as that used with a PI
implementation of the same plant, which will be used as a
comparison of results in the next section.

III. RESULTS AND DISCUSSION

The results that follow are provided by a Matlab®
representation and simulation of the hybrid controller
depicted in Figure 2. LQT controller data and training of
the neural network occurred before the simulation of the
hybrid controller. Step disturbances are injected into the
system, which include two flow step disturbances in Cell 1,
and a temperature step disturbance, also in Cell 1. The flow
disturbances are less than 1% of the absolute flow and the
temperature disturbance is a 15% disturbance. These were
selected based on the type of disturbances expected in a
plant, albeit the flow disturbances correlate better to a step
than the temperature, which would more often be expected
to be a ramp when a heat-generating process goes into
operation. However, a step response provides a more
effective tool at determining the effectiveness of the
controller. For this simulation it is assumed that the supply
air is hotter than the cell air, such as in winter conditions.

Figure 5 depicts the fuzzy tracker output based on the
startup differential and disturbances. Due to the size of the
error, the pressure gradient on the initial startup and the
temperature disturbance cause a transition in the tracking
output of the fuzzy tracker. The initial transition affects all
cells, but the latter affects only Cell 1 in line with the
disturbance. Between 4 and 12 seconds the fuzzy tracker
does not give a response, which is desirable and prevents
the neural controller from tracking unnecessary changes

Fuzzy Tracker Output for 3 Cells
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Fig. 5. 3-Cell Fuzzy Tracker Output
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and minimizes control energy.

For comparison purposes, the same plant was simulated
with PI controllers. In addition, the same flow disturbances
were created. The simple PI controller system is designed
to look at pressure only on a local level, and therefore this
scheme lacks the capability of the hybrid controller to
consider temperature. Figures 6 and 7 depict the controller
outputs to the 3-cell plant. It is worth noting that the hybrid
controller provided improvements over simple PI control,
leveling off quicker and providing appropriate corrections
for temperature variations. In response to the fuzzy rule
base, minor disturbances do not impact the tracking
reference. This is an appropriate application of the integral
controller, which ensures a zero steady state offset with
minimal control energy. Similar offsets would be expected
for modeling and measurement errors, and the primary
reason for its inclusion in the hybrid controller design.

The pressure response of the plant is provided in Figure
8. As the fuzzy tracker rule set favors Cell 1 pressure and
therefore has a more aggressive response to out-of-
specification conditions, it is noted that the initial response
peak for Cell 1 is somewhat reduced compared to the peaks

Pl Controller Output for 3 Cells
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Fig. 6. 3-Cell Simple PI Controller Output
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Fig. 7. 3-Cell Neural Net with Integral Controller

for the other two cells. The flow disturbances into Cell 1,
both an increase and a decrease, create an expected increase
in pressure, then decrease. The temperature increase in Cell
1 causes a direct response from the fuzzy tracker, as
mentioned earlier, causing an immediate decrease in flow
of hot air to the room resulting in cooling.

IV. CONCLUSIONS

While energy efficiency are key to many advanced
control designs in the area of HVAC, industrial facilities
such as those in the DOE complex focus on pressure
controls to prevent migration of hazardous substances.
However, temperature controls must also be considered in
the design, as personnel with PPE must enter these areas to
perform maintenance tasks. Simple PID or PI designs do
not consider the performance of the plant as a whole, or
provide a global control. However, LQT controls can
provide outstanding control for an entire plant.
Implemented using a neural network and fuzzy inference
system providing a tracking reference, the data provided
have demonstrated that a hybrid controller can be
implemented which focuses on the need to optimize global
pressure control while still providing consideration of
temperature effects. Proper application of a rule base can
ensure that the fuzzy tracker prioritizes the control
responses to key control variables, while minimizing
control energy. Inclusion of an integral controller can offset
small disturbances and modeling errors in the LQT design,
reducing the overall effort required by the hybrid controller.

Additional research is being performed to implement the
principles described in this paper on a small HVAC
experimental system. Testing will confirm the ease of
application of the methodology described and provide a
basis for establishing the control design parameters, such as
the integral gain and neural network weights, in an
operational system with associated nonlinearities.
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