Microstructure and Properties of HVOF-Sprayed Ni-50Cr Coatings

PDF Version Also Available for Download.

Description

Thermal spray coatings represent a potential cost-effective means of protecting structural components in advanced fossil energy systems. Previous work at the INL has focused on relationships between thermal spray processing conditions, structure, and properties in alumina- and silica-forming coatings, namely Fe3Al, FeAl, and Mo-Si-B alloys. This paper describes the preparation and characterization of chromia-forming Ni-50%Cr coatings, an alloy similar to the INCOCLAD 671 cladding, which has shown excellent performance in the Niles Plant service tests. The structure and properties of Ni-50Cr coatings are similar to other HVOF-sprayed metallic coatings: a typical lamellar microstructure is observed with essentially no porosity and ... continued below

Creation Information

Simpson, Joel A.; Totemeier, Terry C. & Wright, Richard N. June 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thermal spray coatings represent a potential cost-effective means of protecting structural components in advanced fossil energy systems. Previous work at the INL has focused on relationships between thermal spray processing conditions, structure, and properties in alumina- and silica-forming coatings, namely Fe3Al, FeAl, and Mo-Si-B alloys. This paper describes the preparation and characterization of chromia-forming Ni-50%Cr coatings, an alloy similar to the INCOCLAD 671 cladding, which has shown excellent performance in the Niles Plant service tests. The structure and properties of Ni-50Cr coatings are similar to other HVOF-sprayed metallic coatings: a typical lamellar microstructure is observed with essentially no porosity and little oxide. The microhardness and compressive residual stress both increase with increased spray particle velocity. Corrosion tests were performed on a variety of free-standing coatings (removed from the substrate, wrought Fe3Al alloy, and Grade 91 steel in a simulated coal combustion gas (N2-10%CO-5%CO2-2%H2O-0.12%H2S) and gas-slag environments (same gas, with iron sulfide powder in contact with the coating surface). The coatings tested included Fe3Al, FeAl, and Ni-50Cr alloys sprayed at different velocities. In these tests the iron aluminides in wrought and coating form showed the best performance, with Ni-50Cr coatings slightly worse; the Grade 91 steel was severely attacked.

Source

  • 20th Annual Conference on Fossil Energy Materials,Knoxville, TN,06/12/2006,06/14/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-06-11295
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911658
  • Archival Resource Key: ark:/67531/metadc891362

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 19, 2016, 3:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Simpson, Joel A.; Totemeier, Terry C. & Wright, Richard N. Microstructure and Properties of HVOF-Sprayed Ni-50Cr Coatings, article, June 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc891362/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.