Understanding How Femtosecond Laser Waveguide Fabrication in Glasses Works

PDF Version Also Available for Download.

Description

In order to understand the physical processes associated with fs-laser waveguide writing in glass, the effects of the laser repetition rate, the material composition and feature size were studied. The resulting material changes were observed by collecting Raman and fluorescence spectra with a confocal microscope. The guiding behavior of the waveguides was evaluated by measuring near field laser coupling profiles in combination with white light microscopy. Waveguides and Bragg gratings were fabricated in fused silica using pulse repetition rates from 1 kHz to 1 MHz and a wide range of scan speeds and pulse energies. Two types of fluorescence were ... continued below

Physical Description

PDF-file: 131 pages; size: 3.3 Mbytes

Creation Information

Reichman, W J May 11, 2006.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

In order to understand the physical processes associated with fs-laser waveguide writing in glass, the effects of the laser repetition rate, the material composition and feature size were studied. The resulting material changes were observed by collecting Raman and fluorescence spectra with a confocal microscope. The guiding behavior of the waveguides was evaluated by measuring near field laser coupling profiles in combination with white light microscopy. Waveguides and Bragg gratings were fabricated in fused silica using pulse repetition rates from 1 kHz to 1 MHz and a wide range of scan speeds and pulse energies. Two types of fluorescence were detected in fused silica, depending on the fabrication conditions. Fluorescence from self trapped exciton (E{prime}{sub {delta}}) defects, centered at 550 nm, were dominant for conditions with low total doses, such as using a 1 kHz laser with a scan speed of 20 {micro}m/s and pulse energies less than 1 {micro}J. For higher doses a broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed. Far fewer NBOHC defects were formed with the 1 MHz laser than with the kHz lasers possibly due to annealing of the defects during writing. We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings for all writing conditions. The magnitude of this increase in waveguides fabricated with a 1 MHz laser was nearly twice that of waveguides fabricated with a 1 kHz laser. Additional waveguides were fabricated in soda lime silicate glasses to assess the effects of changing the glass composition. These waveguides formed around, not inside the exposed regions. This is distinctly different from fused silica in which the waveguides are inside the exposed regions. A comprehensive analysis of all the experimental results indicates that good waveguides are formed below the actual damage threshold of the glass. The rapid quenching model, which correlates the refractive index of the modified material to its cooling rate, explains the effect of composition on waveguide behavior.

Physical Description

PDF-file: 131 pages; size: 3.3 Mbytes

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: UCRL-TH-221547
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 899386
  • Archival Resource Key: ark:/67531/metadc891320

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • May 11, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 12:09 a.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Reichman, W J. Understanding How Femtosecond Laser Waveguide Fabrication in Glasses Works, thesis or dissertation, May 11, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc891320/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.