Quantum Monte Carlo study of the reaction: C1 + CH3OH -->CH2OH+ HCl

PDF Version Also Available for Download.

Description

A theoretical study is reported of the Cl + CH{sub 3}OH {yields} CH{sub 2}OH + HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. Moller-Plesset second order perturbation theory (MP2) and density functional theory, ... continued below

Creation Information

Kollias, A.C.; Couronne, O. & Lester Jr., W.A. December 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A theoretical study is reported of the Cl + CH{sub 3}OH {yields} CH{sub 2}OH + HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. Moller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol.

Source

  • Journal Name: Journal of Chemical Physics; Journal Volume: 121; Journal Issue: 3; Related Information: Journal Publication Date: 07/15/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--47444
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 909496
  • Archival Resource Key: ark:/67531/metadc891230

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 12:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kollias, A.C.; Couronne, O. & Lester Jr., W.A. Quantum Monte Carlo study of the reaction: C1 + CH3OH -->CH2OH+ HCl, article, December 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc891230/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.