Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-T(c) Superconductor

PDF Version Also Available for Download.

Description

We report the discovery of a self-doped multilayer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi-surface sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60 K, possessing simultaneously both electron- and hole-doped Fermi-surface sheets. Intriguingly, the Fermi-surface sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the ... continued below

Creation Information

Chen, Yulin; Iyo, Akira; Yang, Wanli; Zhou, Xingjiang; Lu, Donghui; Eisaki, Hiroshi et al. February 12, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report the discovery of a self-doped multilayer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi-surface sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60 K, possessing simultaneously both electron- and hole-doped Fermi-surface sheets. Intriguingly, the Fermi-surface sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/{alpha}, {pi}/{alpha}) scattering.

Source

  • Journal Name: Phys.Rev.Lett.97:236401,2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12340
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 899559
  • Archival Resource Key: ark:/67531/metadc891200

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 12, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:13 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, Yulin; Iyo, Akira; Yang, Wanli; Zhou, Xingjiang; Lu, Donghui; Eisaki, Hiroshi et al. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-T(c) Superconductor, article, February 12, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc891200/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.