Boundary Entropy Can Increase Under Bulk RG Flow

PDF Version Also Available for Download.

Description

The boundary entropy log(g) of a critical one-dimensional quantum system (or two-dimensional conformal field theory) is known to decrease under renormalization group (RG) flow of the boundary theory. We study instead the behavior of the boundary entropy as the bulk theory flows between two nearby critical points. We use conformal perturbation theory to calculate the change in g due to a slightly relevant bulk perturbation and find that it has no preferred sign. The boundary entropy log(g) can therefore increase during appropriate bulk flows. This is demonstrated explicitly in flows between minimal models. We discuss the applications of this result ... continued below

Physical Description

20 pages

Creation Information

Green, Daniel; Mulligan, Michael & Starr, David October 30, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The boundary entropy log(g) of a critical one-dimensional quantum system (or two-dimensional conformal field theory) is known to decrease under renormalization group (RG) flow of the boundary theory. We study instead the behavior of the boundary entropy as the bulk theory flows between two nearby critical points. We use conformal perturbation theory to calculate the change in g due to a slightly relevant bulk perturbation and find that it has no preferred sign. The boundary entropy log(g) can therefore increase during appropriate bulk flows. This is demonstrated explicitly in flows between minimal models. We discuss the applications of this result to D-branes in string theory and to impurity problems in condensed matter.

Physical Description

20 pages

Source

  • Journal Name: Journal of Statistical Mechanics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12907
  • Grant Number: AC02-76SF00515
  • DOI: 10.1002/sim.2958 | External Link
  • Office of Scientific & Technical Information Report Number: 918966
  • Archival Resource Key: ark:/67531/metadc891180

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 30, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 9:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Green, Daniel; Mulligan, Michael & Starr, David. Boundary Entropy Can Increase Under Bulk RG Flow, article, October 30, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc891180/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.