Labr3:Ce scintillators for gamma ray spectroscopy

PDF Version Also Available for Download.

Description

In this paper, we report on a relatively new scintillator -LaBr3 for gamma ray spectroscopy. Crystals of this scintillator have beengrown using Bridgman process. This material when doped with cerium hashigh light output (~;60,000 photons/MeV) and fast principal decayconstant (less than 25 ns). Furthermore, it shows excellent energyresolution for gamma-ray detection. Energy resolution of 3.2 percent(FWHM) has been achieved for 662 keV photons (137Cs source) at roomtemperature. High timing resolution (260 ps - FWHM) has been recordedwith LaBr3-PMT and BaF2-PMT detectors operating in coincidence mode using511 keV positron annihilation gamma-ray pairs. Details of itsscintillation properties, and variation of these properties ... continued below

Creation Information

Shah, K.S.; Glodo, J.; Klugerman, M.; Moses, W.W.; Derenzo, S.E. & Weber, M.J. December 2, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, we report on a relatively new scintillator -LaBr3 for gamma ray spectroscopy. Crystals of this scintillator have beengrown using Bridgman process. This material when doped with cerium hashigh light output (~;60,000 photons/MeV) and fast principal decayconstant (less than 25 ns). Furthermore, it shows excellent energyresolution for gamma-ray detection. Energy resolution of 3.2 percent(FWHM) has been achieved for 662 keV photons (137Cs source) at roomtemperature. High timing resolution (260 ps - FWHM) has been recordedwith LaBr3-PMT and BaF2-PMT detectors operating in coincidence mode using511 keV positron annihilation gamma-ray pairs. Details of itsscintillation properties, and variation of these properties with changingcerium concentration are reported. Potential applications of thismaterial are also addressed.

Subjects

STI Subject Categories

Source

  • Journal Name: IEEE Transactions on Nuclear Science; Journal Volume: 50; Journal Issue: 6pt2; Related Information: Journal Publication Date: 12/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51793
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 894974
  • Archival Resource Key: ark:/67531/metadc891084

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 2, 2002

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 3:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shah, K.S.; Glodo, J.; Klugerman, M.; Moses, W.W.; Derenzo, S.E. & Weber, M.J. Labr3:Ce scintillators for gamma ray spectroscopy, article, December 2, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc891084/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.