Progress on the MICE Tracker Solenoid

PDF Version Also Available for Download.

Description

This report describes the 400 mm warm bore tracker solenoid for the Muon Ionization Cooling Experiment (MICE). The 2.923 m long tracker solenoid module includes the radiation shutter between the end absorber focus coil modules and the tracker as well as the 2.735 m long magnet cryostat vacuum vessel. The 2.554 m long tracker solenoid cold mass consists of two sections, a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field 4 T spectrometer solenoid into the MICE cooling channel. The two tracker magnets are used to provide a uniform magnetic field for the fiber detectors ... continued below

Creation Information

Green, Michael A.; Virostek, Steve P.; Lau, W. & Yang, Stephanie Q. June 10, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This report describes the 400 mm warm bore tracker solenoid for the Muon Ionization Cooling Experiment (MICE). The 2.923 m long tracker solenoid module includes the radiation shutter between the end absorber focus coil modules and the tracker as well as the 2.735 m long magnet cryostat vacuum vessel. The 2.554 m long tracker solenoid cold mass consists of two sections, a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field 4 T spectrometer solenoid into the MICE cooling channel. The two tracker magnets are used to provide a uniform magnetic field for the fiber detectors that are used to measure the muon beam emittance at the two ends of the cooling channel. This paper describes the design for the tracker magnet coils and the 4.2 K cryogenic coolers that are used to cool the superconducting magnet. Interfaces between the magnet and the detectors are discussed.

Source

  • 2006 European Particle Accelerator Conference,Edinburgh, UK, June 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61382
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 918620
  • Archival Resource Key: ark:/67531/metadc891029

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 10, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 3:55 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Green, Michael A.; Virostek, Steve P.; Lau, W. & Yang, Stephanie Q. Progress on the MICE Tracker Solenoid, article, June 10, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc891029/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.