Dark Matter Searches With GLAST

PDF Version Also Available for Download.

Description

Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By ... continued below

Physical Description

6 pages

Creation Information

Wai, Lawrence; /SLAC & Nuss, E. February 5, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By eliminating charged particle background above 100 MeV, GLAST may be sensitive to as yet to be observed Milky Way dark matter subhalos, as well as WIMP pair annihilation spectral lines from the Milky Way halo. Discovery of gamma-ray signals from dark matter in the Milky Way would not only demonstrate the particle nature of dark matter; it would also open a new observational window on galactic dark matter substructure. Location of new dark matter sources by GLAST would dramatically alter the experimental landscape; ground based gamma ray telescopes could follow up on the new GLAST sources with precision measurements of the WIMP pair annihilation spectrum.

Physical Description

6 pages

Source

  • Journal Name: Adv.Space Res.41:2029-2031,2008; Conference: Prepared for 36th COSPAR Scientific Assembly, Beijing, China, 16-23 Jul 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12338
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/899208 | External Link
  • Office of Scientific & Technical Information Report Number: 899208
  • Archival Resource Key: ark:/67531/metadc890996

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 5, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:24 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wai, Lawrence; /SLAC & Nuss, E. Dark Matter Searches With GLAST, article, February 5, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc890996/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.