Implications of turbulence interactions: A path toward addressing very high Reynolds number flows

PDF Version Also Available for Download.

Description

The classical 'turbulence problem' is narrowed down and redefined for scientific and engineering applications. From an application perspective, accurate computation of large-scale transport of the turbulent flows is needed. In this paper, a scaling analysis that allows for the large-scales of very high Reynolds number turbulent flows - to be handled by the available supercomputers is proposed. Current understanding of turbulence interactions of incompressible turbulence, which forms the foundation of our argument, is reviewed. Furthermore, the data redundancy in the inertial range is demonstrated. Two distinctive interactions, namely, the distance and near-grid interactions, are inspected for large-scale simulations. The distant ... continued below

Physical Description

PDF-file: 8 pages; size: 0 Kbytes

Creation Information

Zhou, Y May 15, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The classical 'turbulence problem' is narrowed down and redefined for scientific and engineering applications. From an application perspective, accurate computation of large-scale transport of the turbulent flows is needed. In this paper, a scaling analysis that allows for the large-scales of very high Reynolds number turbulent flows - to be handled by the available supercomputers is proposed. Current understanding of turbulence interactions of incompressible turbulence, which forms the foundation of our argument, is reviewed. Furthermore, the data redundancy in the inertial range is demonstrated. Two distinctive interactions, namely, the distance and near-grid interactions, are inspected for large-scale simulations. The distant interactions in the subgrid scales in an inertial range can be effectively modelled by an eddy damping. The near-grid interactions must be carefully incorporated.

Physical Description

PDF-file: 8 pages; size: 0 Kbytes

Source

  • Presented at: Conference on Turbulent and Interactions T12006, Porquerolles, France, May 29 - Jun 02, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-221402
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 896013
  • Archival Resource Key: ark:/67531/metadc890954

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 15, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 5, 2016, 8:45 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zhou, Y. Implications of turbulence interactions: A path toward addressing very high Reynolds number flows, article, May 15, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc890954/: accessed August 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.