GIFFT: A Fast Solver for Modeling Sources in a Metamaterial Environment of Finite Size

PDF Version Also Available for Download.

Description

Due to the recent explosion of interest in studying the electromagnetic behavior of large (truncated) periodic structures such as phased arrays, frequency-selective surfaces, and metamaterials, there has been a renewed interest in efficiently modeling such structures. Since straightforward numerical analyses of large, finite structures (i.e., explicitly meshing and computing interactions between all mesh elements of the entire structure) involve significant memory storage and computation times, much effort is currently being expended on developing techniques that minimize the high demand on computer resources. One such technique that belongs to the class of fast solvers for large periodic structures is the GIFFT ... continued below

Physical Description

6 p. (0.2 MB)

Creation Information

Capolino, F; Basilio, L; Fasenfest, B J & Wilton, D R January 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Due to the recent explosion of interest in studying the electromagnetic behavior of large (truncated) periodic structures such as phased arrays, frequency-selective surfaces, and metamaterials, there has been a renewed interest in efficiently modeling such structures. Since straightforward numerical analyses of large, finite structures (i.e., explicitly meshing and computing interactions between all mesh elements of the entire structure) involve significant memory storage and computation times, much effort is currently being expended on developing techniques that minimize the high demand on computer resources. One such technique that belongs to the class of fast solvers for large periodic structures is the GIFFT algorithm (Green's function interpolation and FFT), which is first discussed in [1]. This method is a modification of the adaptive integral method (AIM) [2], a technique based on the projection of subdomain basis functions onto a rectangular grid. Like the methods presented in [3]-[4], the GIFFT algorithm is an extension of the AIM method in that it uses basis-function projections onto a rectangular grid through Lagrange interpolating polynomials. The use of a rectangular grid results in a matrix-vector product that is convolutional in form and can thus be evaluated using FFTs. Although our method differs from [3]-[6] in various respects, the primary differences between the AIM approach [2] and the GIFFT method [1] is the latter's use of interpolation to represent the Green's function (GF) and its specialization to periodic structures by taking into account the reusability properties of matrices that arise from interactions between identical cell elements. The present work extends the GIFFT algorithm to allow for a complete numerical analysis of a periodic structure excited by dipole source, as shown in Fig 1. Although GIFFT [1] was originally developed to handle strictly periodic structures, the technique has now been extended to efficiently handle a small number of distinct element types. Thus, in addition to reducing the computational burden associated with large periodic structures, GIFFT now permits modeling these structures with source and defect elements. Relaxing the restriction to strictly identical periodic elements is, of course, useful for practical applications where, for example, a dipole excitation may be of interest or, as is often the case for metamaterials, defective elements are introduced in the structure's fabrication process. The main extensions of the GIFFT method compared to [1] are the following: (1) Both periodic ''background'' and ''source'' or ''defect'' elements are now separately defined in translatable unit cells so that, in the algorithm, mutual electromagnetic interactions can be computed. (2) The near-interaction block matrix must allow for the possibility of ''background-to-source'' or ''background-to-defect'' cell interactions. (3) Matrices representing projections of both ''background and source'' or ''background and defect'' subdomain bases onto the interpolation polynomials must be defined and appropriately selected in forming the matrix-vector product. It is important to note that, although here we consider a metamaterial layer with a dipole-antenna excitation, as per the extended GIFFT algorithm, ''defect'' elements could be considered as well.

Physical Description

6 p. (0.2 MB)

Notes

PDF-file: 6 pages; size: 0.2 Mbytes

Source

  • Presented at: IEEE AP-S International Symposium, Albuquerque, NM, United States, Jul 09 - Jul 14, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-218954
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 894343
  • Archival Resource Key: ark:/67531/metadc890941

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 23, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 17, 2017, 12:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Capolino, F; Basilio, L; Fasenfest, B J & Wilton, D R. GIFFT: A Fast Solver for Modeling Sources in a Metamaterial Environment of Finite Size, article, January 23, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc890941/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.