A multiphase model for heterogeneous explosives in both the dense and dilute limits

PDF Version Also Available for Download.

Description

Multiphase flow phenomena are important in the characterization of many particle-loaded explosives. A numerical model of these flows must often be capable of accurately simulating both dense and dilute particle loadings and often the transition between the two limits. This presents severe numerical difficulties in that numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This abstract compares two established numerical methods and presents improvements to them. The improved methods have enabled the development of a general purpose model that has been successfully ... continued below

Physical Description

9 p. (0.2 MB)

Creation Information

Stevens, D E; Murphy, M J & Dunn, T A June 26, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Multiphase flow phenomena are important in the characterization of many particle-loaded explosives. A numerical model of these flows must often be capable of accurately simulating both dense and dilute particle loadings and often the transition between the two limits. This presents severe numerical difficulties in that numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This abstract compares two established numerical methods and presents improvements to them. The improved methods have enabled the development of a general purpose model that has been successfully applied to a wide range of problems including the energetic dispersal of solid particles.

Physical Description

9 p. (0.2 MB)

Notes

PDF-file: 9 pages; size: 0.2 Mbytes

Source

  • Presented at: International Detonation Symposium, Norfolk, VA, United States, Jul 23 - Jul 28, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-222446
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 896564
  • Archival Resource Key: ark:/67531/metadc890699

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 26, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 17, 2017, 2:11 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stevens, D E; Murphy, M J & Dunn, T A. A multiphase model for heterogeneous explosives in both the dense and dilute limits, article, June 26, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc890699/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.