Extremely Fast Acceleration of Cosmic Rays in a Supernova Remnant

PDF Version Also Available for Download.

Description

Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of theSNRRXJ1713.723946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and ... continued below

Creation Information

Uchiyama, Y.; Aharonian, F. A.; Tanaka, T.; Takahashi, T. & Maeda, Y. October 23, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of theSNRRXJ1713.723946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RXJ1713.723946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10{sup 15} eV) and beyond in young supernova remnants.

Source

  • Journal Name: Nature 449:576-578,2007; Journal Volume: 449

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12913
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 918532
  • Archival Resource Key: ark:/67531/metadc890684

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 23, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • July 26, 2017, 12:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Uchiyama, Y.; Aharonian, F. A.; Tanaka, T.; Takahashi, T. & Maeda, Y. Extremely Fast Acceleration of Cosmic Rays in a Supernova Remnant, article, October 23, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc890684/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.