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ABSTRACT 

  

A model is suggested that predicts the velocity and geometrical characteristics of 

the plasma rotation in the Livermore spheromak. The model addresses the “good 

confinement” regimes in this device, where the typical length of magnetic field lines 

before their intersection with the wall (this length is called “connection length” below) 

becomes large enough to make the parallel heat loss insignificant. In such regimes, the 

heat flux is determined by the transport across toroidally-averaged flux surfaces. The 

model is based on the assumption that, entering the good confinement regime, does not 

automatically mean that the connection length becomes infinite, and perfect flux surfaces 

are established.  It is hypothesized that connection length remains finite, albeit large in 

regard to the parallel heat loss. The field lines are threading the whole plasma volume, 

although it takes a long distance for them to get from one toroidally-averaged flux surface 

to another. The parallel electron momentum balance then uniquely determines the 

distribution of the electrostatic potential between these surfaces. An analysis of viscous 

stresses shows that the toroidal flow is much faster than the poloidal flow. It is shown 

that the rotation shear usually exceeds by a factor of a few the characteristic growth rate 

of drift waves, meaning that suppression of the transport caused by the drift turbulence 

may occur, and a transport barrier with respect to this transport mechanism may be 

formed. The model may be useful for assessing the plasma rotation in other spheromaks 

and, possibly, reversed-field pinches and field-reversed configurations, provided a certain 

set of applicability conditions (Sec. II) is fulfilled. 

PACS Numbers: 52.55.Ip; 52.55.Hc; 52.30.-q 

ryutov1@llnl.gov
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I. INTRODUCTION 

The spheromak is an extreme example of a magnetically self-organized toroidal 

system, where the conversion of the poloidal to the toroidal current occurs via the 

magnetic reconnection process [1,2]. This process, generally speaking, leads to the 

magnetic field lines stochastization. In the regime of spheromak formation, early in the 

pulse, where the reconnection process is active and the system is far from the relaxed 

Taylor-like state, the field lines between their intersection with the walls of the vacuum 

chamber are short, and the confinement is dominated by the heat loss along the field 

lines. However, when a state close to a relaxed state is formed, the magnetic fluctuations 

decrease, and the field line length becomes so large that the cross-field heat transport 

takes over the parallel transport. In this regime, electron temperature and density become 

approximately constant over flux surfaces of the toroidally-averaged magnetic field (we 

will use a shorter term “toroidally-averaged flux surfaces” and an acronym “TAFS” 

throughout the paper), and this is a regime that we are going to study in this paper.  

The aforementioned transition has been identified both experimentally [3] and in 

numerical simulations [4, 5]. The parallel confinement time for a poor confinement 

regime was evaluated in Refs. [6,7]. The statistics of the field line lengths was studied in 

Refs. [8, 9].  

Leaving the detailed discussion of the model used in this paper until Sec. II, here 

we just mention our key hypothesis, which is that transition to the good confinement does 

not mean the flux surfaces suddenly become perfect. We hypothesize that even in the 

regime of a good confinement they remain “fuzzy”, and the plasma interior remains 

connected to the cold external plasma along the field lines, albeit the connection length 
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becomes very large. The analysis of the electron parallel momentum balance then shows 

that the plasma potential is constant over TAFS, meaning that toroidal rotation frequency 

is constant over TAFS (Secs. III, IV). All these predictions could be verified 

experimentally. The rotation frequency, generally speaking, varies from one flux surface 

to another, i.e., the rotation shear is present. The rotation shear may be large and may 

lead to the suppression of the drift-wave turbulence and, possibly, to the formation of 

transport barriers with respect to the drift transport.  

We concentrate on the parameter domain typical for the Livermore spheromak 

SSPX (Sustained Spheromak Physics Experiment), although our analysis may be 

applicable to other devices, provided that applicability conditions specified in Sec. II are 

satisfied.  A rough schematic of TAFS in SSPX is shown in Fig. 1. As a characteristic set 

of parameters, we take the ones presented in Table 1 based on Refs. [3, 10, 11]. The 

following notation is used in TABLE 1 and throughout the paper: R0 is the distance 

between the geometrical and magnetic axis, aS is characteristic “radius” of the last closed 

flux surface, n, Te, and Zeff are the density, electron temperature and the parameter 

characterizing the presence of higher-Z ions, respectively, BT and BP are the toroidal and 

poloidal magnetic field strengths near the outer wall. In the Table, we cite some 

“characteristic” electron temperature, averaged over the confinement volume; the 

maximum temperature was approximately 350 eV [10, 11].  

In TABLE 2, we present some relevant derived parameters corresponding to the 

numbers mentioned in TABLE 1. The following notation is used: νei is the electron-ion 

collision frequency, λei is the electron-ion collision length, N is a number of mean free 
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paths over the toroidal circumference, 
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II. THE MODEL 

We consider regimes of a good confinement, where the characteristic field line 

connection length L (which we define as a characteristic distance along the field line 

between a point in the plasma interior and the separatrix) becomes so large that the 

parallel heat loss becomes negligible. At the same time, we hypothesize that this length 

still remains finite (albeit large) so that any point inside the plasma still remains 

connected to the cold plasma near the separatrix. This is a hypothesis, not a proven fact. 

But we believe that transition from a poor to a good confinement is gradual, so that the 

parameter L does not jump from some large value to infinity in the form similar to the 

phase transition. We analyze the consequences of this hypothesis and come up with 

predictions regarding the plasma rotation that can be verified experimentally, thereby 

proving or disproving the main hypothesis.  

Note that there are no rotation measurements in good confinement regimes of 

SSPX experiment. There are some indirect indications that the rotation may be present. In 

particular, in order to make magnetic fluctuation spectra consistent with experimental 

spectra, a rotation with a frequency f=20 kHz was imposed in the numerical simulations 

of SSPX [5]. As we shall see, this frequency is consistent with our model, although there 

is no way for a more detailed comparison at present. Rotation at the formation phase may 

also be present (see Refs. [12, 13] and references therein), but our model cannot be 

applied to this case because of a short connection length during the formation phase. We 
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also note that in the NIMROD simulations [9], a slow rotation of the modes was observed 

when two-fluid effects were included.  

Small magnetic fluctuations and the large connection length mean that the field 

line makes many revolutions in toroidal and poloidal directions before it goes far away 

from the flux surface where it has originated from. This means that the electron 

temperature will be constant over the flux surface. The plasma density will also equalize 

over the flux surface.   

The main point of our hypothesis is that the plasma interiors still remain 

connected to the periphery, although connection length is large, so that the time for 

establishing the temperature equilibrium along the field line is large compared to the time 

of cross-field loss. The heat balance equation can be schematically presented as: 
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where the first term in the right hand side (RHS) describes the parallel heat loss, with τ|| 

being the heat conduction time proportional to L2, the second term relates to the 

perpendicular heat conduction, and QJ is the heat source (predominantly Joule heating for 

the conditions of SSPX experiment). As mentioned, at large-enough L, the condition 

! 

"
||

> "#  would be met, and the first term in the RHS would become negligible, meaning 

that in the quasi-steady state the temperature would vary according to the balance of the 

second from the last and the last term. This can also be formulated as the following 

statement: the time for establishing the parallel heat balance is much greater than the 

experimental confinement time. The radial temperature profile will be established as a 

result of balancing heat sources and cross-field diffusion. We do not need to specify the 

mechanism of the cross-field energy loss, be it the anomalous transport associated with 
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drift-wave (or other) microturbulence, or, as an extreme case, a classical ion thermal 

conduction. What we need, is just the experimental estimate of the confinement time τ⊥. 

 The parallel confinement time can be roughly evaluated as (Cf. Refs. [6,7]) 
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or, in “practical” units 
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According to Eq. (2), the condition 
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> "# is met for L exceeding some critical length L1, 
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 For the “characteristic” regime described by Table 1, this condition is met for L>100 m. 

 The absence of the parallel thermal equilibrium does not mean that there is no 

mechanical equilibrium of the electron gas along the field line. Indeed, the parallel 

momentum equation for the electrons is [14]:  
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and, because of a small electron mass, the inertial term in the left-hand side (LHS) can be 

neglected (compared to, say, pressure term in the RHS) for not-too-large connection 

lengths. Indeed, relating the change of the plasma parameters along the flux tubes to the 

time 
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"# , one can write this condition as  
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The meaning of the other terms in the RHS of Eq. (5) is as follows [14]: the 

second term describes the thermal force acting on the electrons, and the third term is the 

effect of a static electric field. The numerical coefficient 0.71 in front of the thermal force 

corresponds to a purely hydrogen plasma; it is slightly larger for the plasma with Zeff=2, 

but we neglect this difference. Strictly speaking, one should have added two more terms 

to the RHS of Eq. (5): the friction force caused by the presence of a parallel current, 

! 

me" ei j|| /e , and the electric force –enE|| caused by the vortex electric field that drives this 

current. However, these two forces cancel each other, 

! 

me" ei j|| /e # enE|| = 0 , and do not 

contribute to the momentum balance, Eq. (5).  

For the parameters of Table 1, L2 is 2000 m, i.e., much greater than L1 (Eq. (4)). 

In other words, field lines may be long enough so that the parallel thermal equilibrium is 

absent, but the parallel mechanical equilibrium is present. This is exactly the regime for 

which our model should work.  

In this regime, the plasma temperature and density are, to a high accuracy,  

constant over TAFS;  on the other hand, every point inside the plasma is still connected 

to the vicinity of the wall, just the connection length is large.  This is a regime which we 

assess in the rest of the paper.  

III. POTENTIAL DISTRIBUTION INSIDE THE PLASMA 

 Denoting by Ψ the poloidal magnetic flux enclosed by some flux surface (we 

measure Ψ from the magnetic axis where it is zero), one can state that 

! 

T
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! 

n = n(") . This simultaneously means that one can consider the temperature as a function 

of density, 
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(n). [If the density is a non-monotonic function of the flux, this 

dependence may have more than one branch, but this does not change anything 
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substantial in the further analysis.] With this observation in mind, one can rewrite Eq. (5) 

as: 
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where ns is the density in the vicinity of the separatrix (which, in the case of SSPX, is 

very close to the wall). Integrating this equation from the separatrix to the plasma core, 

we find: 
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The plasma at the separatrix and outside it is much colder than the plasma in the core, and 

the potential variation in this zone is also small. So, we neglect the term ϕs  in Eq. (9) and 

obtain: 
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 As n and Te are the flux functions, so is the electrostatic potential determined from 

Eq. (10). In other words, according to this analysis, the potential is constant over each 

flux surface. This, in particular, means that the electric field has only a normal (to the 

flux surface) component En. The normal distance between two flux surfaces separated by 

the flux ΔΨ is 

! 

"# /2$RBp , where R is the major radius of the observation point and Bp is 

the magnetic field at this point.  Accordingly, En can be evaluated as:  
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IV. EVALUATION OF THE ROTATION VELOCITY 
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To find the rotation velocity in the presence of the electric field normal to the flux 

surfaces, we consider three components of the momentum equation for the ion guiding 

centers. The normal component is: 
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We assume that the ions are colder than  electrons, Ti<Te, and neglect the gradB force and 

the centrifugal force in this equation.  Their ratio to the first term in the l.h.s. is ~Ti/Te. 

The assumption Ti<Te, may have a justification in the SSPX case, where the dominant 

heating mechanism in the quiescent, good confinement mode, is Joule heating, which 

predominantly heats electrons. We will discuss possible changes in our predictions for 

the Ti~Te case in Sec. VI.  

 The toroidal component is:  
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1

c
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where  
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fT
(visc )

~ mi"#
vT /a

2  is a viscous force caused by the possible shearing of the 

toroidal flow, with η⊥~ρi
2νii  being a shear kinematic viscosity [14].  Here ρi is the ion 

gyro-radius, and νii is the ion-ion collision frequency.  

The poloidal component is: 
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with 

! 

fP
(visc )

~ mi" ||
vP /a

2  being the poloidal viscous force, and η||~λi
2νii being the parallel 

kinematic viscosity [14]. Here λi is the ion-ion mean free path. The parallel viscosity 

comes into play due to the fact that, in such a tight-aspect-ratio system as the spheromak 
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is, the continuity of the poloidal flow leads to an order-of-one variation of the poloidal 

velocity over the flux surface.  

 By noting that, in a spheromak, the poloidal and toroidal components of the 

magnetic field are of the same order of magnitude, Bp~BT,  and eliminating vn  from Eqs 

(13) and (14), one finds that 

! 

fP
(visc )

/ fT
(visc )

~ 1 and, accordingly, vp~(ρi /λi)2vT<<vT. In 

other words, one can expect that the poloidal velocity in a spheromak will be much less 

than the toroidal velocity. Then, neglecting the poloidal velocity in Eq. (12), one finds the 

following simple expression for the toroidal velocity:  
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We have used Eq. (11) for the electric field. There is no singularity in the toroidal 

velocity at the magnetic axis.  

 The angular frequency of the toroidal rotation, 
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The rotation frequency is a flux function, i.e., it is constant at any given flux surface; on 

the other hand, it may vary from one flux-surface to another, i.e., a shear in the toroidal 

rotation may be present. The velocity shear can be characterized by the quantity of the 

dimension of frequency, 
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 One can check that, for the function 
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1.71 monotonically decreasing in the radial 

direction, the rotation occurs in the direction of the toroidal current. By the order of 

magnitude, the rotation velocity is 
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velocity, and ρi*=cS/ωci. In other words, the flow is deeply sub-sonic and does not have 

any significant influence on the plasma equilibrium. 

V. SIMPLE EXAMPLES  

A. Potential distribution 

Eqs. (10) and (16) allow one to find the radial distribution of the electrostatic 

potential and rotation frequency for the known distributions of the density and electron 

temperature. In order to have some general idea of the possible results and in order to 

have simple analytic expressions suitable for quick scoping analyses, we consider the 

simplest possible model of the plasma, where the spheromak is “rectified” in the toroidal 

direction, to form a periodic cylinder, with the axial period 2πR0, where R0 is the radius 

of the magnetic axis in a real spheromak (Fig. 1). We further assume that the flux 

surfaces are just nested concentric circles. We will then associate the rotation frequency 

with vT/R0. The toroidal current density will be assumed to be uniform, meaning that the 

poloidal magnetic field scales as  
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B
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where r is the distance from the magnetic axis,  as is a radius that would mark the 

location of a separatrix in a real geometry, and BPS is the magnetic field at this radius. 

This is, of course, a very crude model, but still sufficient to make order-of-magnitude 

estimates and identify some trends.  

 The radial dependences of the electron temperature and plasma density will be 

parametrized as 
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where  subscript “0” designates the quantities at the magnetic axis, and the parameters aT 

and an are length-scales of the radial variation of the temperature and density. They are 

related to the values of  Te and n at the outermost flux surface r=aS: 
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 Using these equation and Eq. (10), one finds: 
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The potential at the magnetic axis (where n=n0) is  
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B. Toroidal velocity distribution 

Using Eqs (15) and (21), we find the toroidal velocity: 
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The corresponding angular frequency Ω≡vT/R0 is  
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The graphs of the angular frequency are presented in Fig. 2. We see that the 

rotation frequency f=Ω/2π is maximum near the magnetic axis, where it is in the range of 

10-15 kHz, and becomes smaller near the separatrix, where it is in the range of 1-1.5 kHz. 
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The radial shear, which in the”rectified”case is ω≡R0dΩ/dr, is 
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The maximum shear is  
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The graphs of the radial shear normalized to the “Bohm frequency”     

! 
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/ eB
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a
T

2  are 

presented in Fig. 3.  

VI. DISCUSSION 

The main assumption of our model is the assumption that the interior points of the 

confinement volume are connected to the walls along the field lines, which are very long 

in terms of the parallel heat loss but short in terms of the parallel electron equilibrium. In 

other words, our model is based on the hypothesis that the “disconnection” from the walls 

during the transition to a good confinement regime does not occur instantaneously, and 

the connection length does not jump from the finite value in a poor confinement mode to 

infinity in a good confinement mode, but rather increases gradually.  

In the regime of the good confinement the concept of nested flux surfaces 

acquires a quantitative meaning, with the electron temperature and plasma density 

becoming flux functions to a high degree of accuracy. This, however, does not prevent 

the electrostatic potential from being translated from one flux surface to another along the 

field lines that connect them, Eq. (5). The potential distribution that follows from this 

model is expressed by Eq. (10).  

The model predicts rotation velocity which is significantly smaller than the sound 

velocity cs; therefore, one should not expect any strong effect of the rotation on the 
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plasma equilibrium. On the other hand, the presence of the shear in the rotation frequency 

may have a stabilizing effect on drift instabilities which may be responsible for the 

plasma transport in the regimes of a “good” confinement. Indeed, the characteristic 

growth rate of most of the branches of the drift instability is typically less than [15] 

! 

" ~
cT

e

Ba
T

2
              (28) 

A rough qualitative criterion of a significant stabilizing effect of the shear on the 

instability (used in the physics of a turbulent transport in tokamaks) is: ω>γ (see Ref. [16] 

for a survey). In the zone of the largest gradient of the electron temperature this condition 

is satisfied by a margin of 3 to 4 (Eq. (27) and Fig. 3). Therefore, one can expect a 

favorable effect of rotation on the plasma losses.  As the shear in our model is associated 

with the gradient of the electron temperature (and, to a lesser degree, to the gradient of 

the plasma density), there is a possibility for the spontaneous formation of the transport 

barrier: the steepening of the temperature profile will increase a shear and give rise to a 

stronger suppression of the drift modes, thereby causing further reduction of the 

transport.  

 Note that steep temperature gradients have in some cases been observed at the 

SSPX facility (see, e.g., the lower panel in Fig. 7 of Ref. [4]). However, it would be 

premature to explain them by the mechanism of shear stabilization of drift modes, as they 

were probably associated with the chain of rather “fat” magnetic islands (see the upper 

two panels in Fig. 7 of Ref. [4]),  and the gross change of the field line topology might be 

a more important factor in their formation. Direct measurements of plasma potential 

and/or plasma rotation would be needed to evaluate the role of shear-flow stabilizaion in 

this case.  
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The model works until the field lines are not too long. In the case of a spheromak, 

the upper bound on the field line length is determined by Eq. (7). Other factors that may 

limit the field line length are collisionless effects associated with Landau damping for the 

parallel motion. However, in the case of the SSPX spheromak (as well as other present-

day spheromaks of a comparable size), the plasma is quite collisional, with the ratio N of 

the spheromak toroidal circumference 2πR to the Coulomb mean free path λei being of 

order 1-4, depending on the temperature. This makes collisionless effects not very 

plausible.  

On the other hand, if the regimes with significantly higher temperatures are 

reached in SSPX, various collisionless effects may become important, meaning that Eq. 

(10) will become invalid and direct relation between the local potential and local 

temperature and density will break down. Also, the condition of L<L2 may break down. 

In these regimes, much more subtle effects would determine both the plasma potential 

distribution and the plasma rotation, the effects similar to those governing plasma 

rotation in tokamaks and largely related to the neoclassical effects (see Ref. [17] for an 

excellent survey).  

Possible applicability of our model to reversed-field-pinches and field-reversed 

configurations would require additional analysis. It should also be remembered that our 

model is based on the hypothesis and plausibility arguments, not on the first-principle 

theory. 

In the discussion of the plasma flow, we used assumption that the ion temperature 

is smaller than the electron temperature, and the forces associated with the non-

uniformity of the magnetic field in the ion momentum equation (12) are negligible. For 
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Ti~Te, the term ~ Ti/as would have to be added to the RHS of Eq. (12). On the other hand, 

the electric force eEn evaluated from Eq. (11) contains additional numerical factor ~ 4-5 

compared to a simple estimate of Te/as. Therefore, the gradB force should not cause a 

significant change in our predictions for Ti~Te. However, if Ti becomes a few times 

higher than Te, our predictions regarding the rotation break down. This sets one more 

applicability limit for the present analysis.  

Acknowledgments 

The author is grateful to D.N. Hill, E.B. Hooper, H.S. McLean, C.A. Romero-Talamas, 

and R.D. Wood for fruitful discussions. Work performed under the auspices of the U.S. 

Department of Energy by University of California Lawrence Livermore National 

Laboratory under contract No. W-7405-Eng-48. 

 



 17 

References 
 
1. J.B. Taylor. “Relaxation and magnetic reconnection in plasmas.” Reviews of Modern 

Physics, 58, 741 (1986). 
 
2. T.R. Jarboe. “Review of spheromak research.” Plasma Physics and Controlled Fusion, 

36, 945 (1994). 
 
3. H.S. McLean, S. Woodruff, E.B. Hooper, R.H. Bulmer, D.N. Hill, C. Holcomb, J. 

Moller, B.W. Stallard, R.D. Wood, Z. Wang. “Suppression of MHD fluctuations 
leading to improved confinement in a gun-driven spheromak.” Physical Review 
Letters, 88, 125004 (2002).  

 
4. B.I. Cohen, E.B. Hooper, R.H. Cohen, D.N. Hill, H.S. McLean, R.D. Wood, S. 

Woodruff, C.R. Sovinec, G.A. Cone. “Simulation of spheromak evolution and energy 
confinement.” Physics of Plasmas, 12, 56106 (2005).  

 
5. E.B. Hooper, T.A. Kopriva, B.I. Cohen, D.N. Hill, H.S. McLean, R.D. Wood, S. 

Woodruff, C.R. Sovinec. “Magnetic reconnection during flux conversion in a driven 
spheromak.” Physics of Plasmas, 12, 92503 (2005).  

 
6. E.B. Hooper, R.H. Cohen, D.D. Ryutov. “Theory of edge plasma in a spheromak.” 

Journal of Nuclear Materials, 278, 104 (2000).  
 
7. R.W. Moses, R.A. Gerwin,  K.F. Schoenberg,  “Transport implications of current drive 

by magnetic helicity injection.” Physics of Plasmas, 8, 4839 (2001). 
 
8. J.M. Finn, C.R. Sovinec, D. del-Castillo-Negrete. “Chaotic scattering and self-

organization in spheromak sustainment.” Physical Review Letters, 85, 4538 (2000).  
 
9. C.R. Sovinec, J.M. Finn, D. del-Castillo-Negrete. “Formation and sustainment of 

electrostatically driven spheromaks in the resistive magnetohydrodynamic model.” 
Physics of Plasmas, 8, 475 (2001). 

 
10. R.D. Wood, D.N. Hill, E.B. Hooper, S. Woodruff, H.S. McLean, B.W. Stallard. 

“Improved operation of the SSPX spheromak.” Nuclear Fusion, 45, 1582 (2005).  
 
11. H.S. McLean, R.D. Wood, B.I. Cohen, E.B. Hooper, D.N. Hill, J.M. Moller, C. 

Romero-Talamas, S. Woodruff. “Transport and fluctuations in high temperature 
spheromak plasmas.” Physics of Plasmas, 13, 56105 (2006).  

 
12. C.A. Romero-Talamas, C. Holcomb, P.M. Bellan, D.N. Hill. “Spheromak formation 

and susteinment studies at the sustained spheromak physics experiment using high-
speed imaging and magnetic diagnostics.” Phys. Plasmas, 13, 022502 (2006). 

 



 18 

13. C.T. Holcomb, T.R. Jarboe, D.N. Hill, S. Woodruff, R.D. Wood. “Sustained 
spheromak coaxial gun operation in the presence of an n=1 magnetic distortion.” 
Phys. Plasmas, 13, 022504 (2006). 

 
14. S.I. Braginski. “Transport Processes in a Plasma.” In: Reviews of Plasma Physics, v. 

1, p. 205, M.A. Leontovich, Ed. (Consultants Bureau, NY, 1965). 
 
15. A.B. Mikhailovskii. “Electromagnetic instabilities in an inhomogeneous plasma”  

(Institute of Physics, Bristol, 1992).  
 
16. K.H. Burrell. “Effects of E × B velocity shear and magnetic shear on turbulence and 

transport in magnetic confinement devices,” Phys. Plasmas, 4, 1499 (1997). 
 
17. K.C. Shaing. “Plasma Rotation in Tokamaks,” International Tokamak Physics 

Activity (ITPA), Working Group on momentum transport/plasma rotation, April 24-
27, 2006, Princeton, USA (private communication). 



 19 

 
 

TABLE 1. Characteristic plasma parameters for  SSPX 

   =========================================================== 

                  Spatial and temporal                Plasma parameters                   Magnetic field (in the  

                    characteristics                                                                    equatorial plane near the wall) 

    ________________________________________________________________________________ 

            R0, cm        aS, cm     τ⊥, ms         n, cm-3    Te, eV     Zeff                 BT, kG             BP, kG 

    ________________________________________________________________________________ 

           25            25        0.3          1014      100       2                  3                  3 

   ============================================================ 

 

TABLE 2. Some derived parameters for SSPX 

     =========================================================== 

                  νei, s-1               λei, cm           N=2πR0/λei           cS, cm/s          ρi*, cm 

      __________________________________________________________________ 

       3.5⋅106                150                     1                    1,5⋅107              0.5 

     =========================================================== 
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Figure captions 
 
Fig. 1 The geometry of the problem. Shown is a set of flux surfaces for the toroidally-

averaged magnetic field; O is the magnetic axis, R is the distance between the 

geometrical axis and a given point on a flux surface; R0 is this parameter for the magnetic 

axis; as is a characteristic “radius” of the last-closed flux surface. In spheromaks, 

typically, as~R0. Thick lines depict conducting walls of the flux conserver. 

 

Fig. 2 The radial distribution of the rotation frequency [Eq. (25)] for n0/nS =2, and 

TeS=20eV; central temperatures are indicated by the curves. 

 

Fig. 3 The shear ω [Eq. (26)] normalized to the Bohm frequency ωB=cTe0/eBPSaT
2 for 

n0/nS=2, TeS=20 eV, and the temperature at the magnetic axis Te0=100 eV (curve 1), 150 

eV (curve 2), and 200 eV (curve 3). One sees that velocity shear exceeds the Bohm 

frequency over most of the plasma volume. 
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