The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

PDF Version Also Available for Download.

Description

The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during ... continued below

Creation Information

Weaver, K. D.; Marshall, T.; Wei, T. Y. C.; Feldman, E. E.; Driscoll, M. J. & Ludewig, H. September 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INEEL/EXT-03-01297
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/910729 | External Link
  • Office of Scientific & Technical Information Report Number: 910729
  • Archival Resource Key: ark:/67531/metadc890594

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Weaver, K. D.; Marshall, T.; Wei, T. Y. C.; Feldman, E. E.; Driscoll, M. J. & Ludewig, H. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal, report, September 1, 2003; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc890594/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.