Long-Term Phase Instability in Water-Quenched U-6Nb

PDF Version Also Available for Download.

Description

A combinative approach of microhardness testing, tensile testing, and TEM microstructural analysis was employed to study the microstructure and mechanical instability of a water-quenched U-6wt.% Nb (WQ-U6Nb) alloy subjected to different aging schedules including artificial aging at 200 C, 15-year natural aging at ambient temperatures, and 15-year natural aging followed by accelerative aging at 200 C. The changes in mechanical property during and after the aging processes were examined using microhardness and tensile-testing methods. During the early stages of artificial aging at 200 C, the microhardness of WQ-U6Nb alloy increased, i.e., age hardening, as a result of the development of ... continued below

Physical Description

PDF-file: 12 pages; size: 0 Kbytes

Creation Information

Hsiung, L L & Zhou, J January 16, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A combinative approach of microhardness testing, tensile testing, and TEM microstructural analysis was employed to study the microstructure and mechanical instability of a water-quenched U-6wt.% Nb (WQ-U6Nb) alloy subjected to different aging schedules including artificial aging at 200 C, 15-year natural aging at ambient temperatures, and 15-year natural aging followed by accelerative aging at 200 C. The changes in mechanical property during and after the aging processes were examined using microhardness and tensile-testing methods. During the early stages of artificial aging at 200 C, the microhardness of WQ-U6Nb alloy increased, i.e., age hardening, as a result of the development of nanoscale modulation caused by spinodal decomposition. Coarsening of the modulated structure occurred after a prolonged aging at 200 C for 16 hours, and it led to a decrease of microhardness, i.e., age softening. Phase instability was also found to occur in WQ-U6Nb alloy that was subjected to a 15-year natural aging at ambient temperatures. The formation of partially ordered domains resulting from a spinodal modulation with an atomic-scale wavelength rendered the appearance of swirl-shape antiphase domain boundaries (APBs) observed in TEM images. Although it did not cause a significant change in microhardness, 15-year natural aging has dramatically affected the aging mechanisms of the alloy isothermally aged at 200 C. Microhardness values of the NA alloy continuously increased after isothermal aging at 200 C for 96 hours as a result of the phase decomposition of partially ordered domains into Nb-depleted {alpha} phase and Nb-enriched U{sub 3}Nb ordered phase in the alloy. It is concluded that the long-term natural aging changes the transformation sequence of WQ-U6Nb, and it leads to order-disorder transformation, precipitation hardening, and ductility embrittlement of WQ-U6Nb alloy.

Physical Description

PDF-file: 12 pages; size: 0 Kbytes

Source

  • Presented at: 15th Biennial Conference on Nuclear Explosive Design Physics Conference, Livermore, CA, United States, Oct 17 - Oct 21, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-218278
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 895078
  • Archival Resource Key: ark:/67531/metadc890575

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 16, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 6:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hsiung, L L & Zhou, J. Long-Term Phase Instability in Water-Quenched U-6Nb, article, January 16, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc890575/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.