The Interactions of Surface Damage on RF Cavity Operation

PDF Version Also Available for Download.

Description

Studies of low frequency RF systems for muon cooling has led to a variety of new techniques for looking at dark currents, a new model of breakdown, and, ultimately, a model of RF cavity operation based on surface damage. We find that cavity behavior is strongly influenced by the spectrum of enhancement factors on field emission sites. Three different spectra are involved: one defining the initial state of the cavity, the second determined by the breakdown events, and the third defining the equilibrium produced as a cavity operates at its maximum field. We have been able to measure these functions ... continued below

Physical Description

3 pages

Creation Information

Norem, J.; Hassanein, A.; Insepov, Z.; Moretti, A.; Qian, Z.; Bross, A. et al. June 26, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Studies of low frequency RF systems for muon cooling has led to a variety of new techniques for looking at dark currents, a new model of breakdown, and, ultimately, a model of RF cavity operation based on surface damage. We find that cavity behavior is strongly influenced by the spectrum of enhancement factors on field emission sites. Three different spectra are involved: one defining the initial state of the cavity, the second determined by the breakdown events, and the third defining the equilibrium produced as a cavity operates at its maximum field. We have been able to measure these functions and use them to derive a wide variety of cavity parameters: conditioning behavior, material, pulse length, temperature, vacuum, magnetic field, pressure, gas dependence. In addition we can calculate the dependence of breakdown rate on surface field and pulse length. This work correlates with data from Atom Probe Tomography. We will describe this model and new experimental data.

Physical Description

3 pages

Source

  • Contributed to European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 Jun 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-06-388-AD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 897176
  • Archival Resource Key: ark:/67531/metadc890563

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 26, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • July 26, 2017, 11:32 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Norem, J.; Hassanein, A.; Insepov, Z.; Moretti, A.; Qian, Z.; Bross, A. et al. The Interactions of Surface Damage on RF Cavity Operation, article, June 26, 2006; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc890563/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.