Determining the Mechanical Constitutive Properties of Metals as Function of Strain Rate and temperature: A Combined Experimental and Modeling Approach

PDF Version Also Available for Download.

Description

Development and validation of constitutive models for polycrystalline materials subjected to high strain-rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions. To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be integrated fully with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experiment is the guiding ... continued below

Creation Information

Robertson, Ian April 28, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Development and validation of constitutive models for polycrystalline materials subjected to high strain-rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions. To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be integrated fully with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experiment is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models. One aspect of the program involves the direct observation of specific mechanisms of micro-plasticity, as these indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. During this project, the following achievements have been obtained: 1. Twins have been observed to act as barriers to dislocation propagation and as sources of and sinks to dislocations. 2. Nucleation of deformation twins in nitrogen strengthened steel is observed to be closely associated with planar slip bands. The appearance of long twins through heavily dislocated microstructures occurs by short twins nucleating at one slip band, propagating through the dislocation-free region, and terminating at the next slip band. This process is repeated throughout the entire grain. 3. A tamped-laser ablation loading technique has been developed to introduce high strain rate, high stress and low strains. 4. Both dislocation slip and twinning are present in high strain-rate deformed zirconium, with the relative contribution of each mode to the deformation depending on the initial texture. 5. In situ IR thermal measurements have been used to show that the majority of plastic work is dissipated as heat even under conditions in which twinning is the dominant deformation mode.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/NA/00072-Final
  • Grant Number: FG52-02NA00072
  • DOI: 10.2172/908246 | External Link
  • Office of Scientific & Technical Information Report Number: 908246
  • Archival Resource Key: ark:/67531/metadc890507

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 28, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 23, 2016, 3:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Robertson, Ian. Determining the Mechanical Constitutive Properties of Metals as Function of Strain Rate and temperature: A Combined Experimental and Modeling Approach, report, April 28, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc890507/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.