The low cost of geological assessment for underground CO2 storage: Policy and economic implications

PDF Version Also Available for Download.

Description

The costs for carbon dioxide (CO{sub 2}) capture and storage (CCS) in geologic formations is estimated to be $6-75/t CO{sub 2}. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning-by-doing until these disincentives for the free venting of CO{sub 2} are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25-60/t CO{sub 2} for power plant applications followed ... continued below

Physical Description

PDF-file: 20 pages; size: 0.1 Mbytes

Creation Information

Friedmann, S J; Dooley, J; Held, H & Edenhofer, O January 31, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The costs for carbon dioxide (CO{sub 2}) capture and storage (CCS) in geologic formations is estimated to be $6-75/t CO{sub 2}. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning-by-doing until these disincentives for the free venting of CO{sub 2} are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25-60/t CO{sub 2} for power plant applications followed by CO{sub 2} transport and storage, estimated at $0-15/t CO{sub 2}. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one-time costs are probably on the order of $0.1/t CO{sub 2} or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals, and development facilities engineering. Since assessment costs are roughly 2 orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private/public funding of major assessment initiatives should underpin early policy choices regarding CO{sub 2} storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.d

Physical Description

PDF-file: 20 pages; size: 0.1 Mbytes

Source

  • Journal Name: Energy Conversion & Management, vol. 47, no. 13, August 12, 2006, pp. 1894-1901

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-209737
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 897996
  • Archival Resource Key: ark:/67531/metadc890432

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 31, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 7:02 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Friedmann, S J; Dooley, J; Held, H & Edenhofer, O. The low cost of geological assessment for underground CO2 storage: Policy and economic implications, article, January 31, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc890432/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.