Fabrication and Characterization of Dual Phase Magnesia-Zirconia Ceramics Doped with Plutonia

PDF Version Also Available for Download.

Description

Dual phase magnesia-zirconia ceramics doped with plutonia are being studied as an inert matrix fuel (IMF) for light water reactors. The motivation of this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on yttria stabilized zirconia. The concept uses the MgO phase as an efficient heat conductor to increase thermal conductivity of the composite. In this paper ceramic fabrication and characterization by scanning electron microscopy, energy and wavelength dispersive xray spectroscopy is discussed. Characterization shows that the ceramics consist of the two-phase matrix and PuO2-rich inclusions. The matrix is comprised of ... continued below

Creation Information

Medvedev, P. G.; Jue, J. F.; Frank, S. M. & Meyer, M.K. May 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dual phase magnesia-zirconia ceramics doped with plutonia are being studied as an inert matrix fuel (IMF) for light water reactors. The motivation of this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on yttria stabilized zirconia. The concept uses the MgO phase as an efficient heat conductor to increase thermal conductivity of the composite. In this paper ceramic fabrication and characterization by scanning electron microscopy, energy and wavelength dispersive xray spectroscopy is discussed. Characterization shows that the ceramics consist of the two-phase matrix and PuO2-rich inclusions. The matrix is comprised of pure MgO phase and MgO-ZrO2-PuO2 solid solution. The PuO2-rich inclusion contained dissolved MgO and ZrO2.

Source

  • European Materials Research Society Spring Meeting/Inert Matrix Fuel-10 Workshop,Strasbourg, France,05/31/2005,06/03/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00325
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911105
  • Archival Resource Key: ark:/67531/metadc890342

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 6:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Medvedev, P. G.; Jue, J. F.; Frank, S. M. & Meyer, M.K. Fabrication and Characterization of Dual Phase Magnesia-Zirconia Ceramics Doped with Plutonia, article, May 1, 2005; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc890342/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.