Ultrasonic Phased Array Implementation of the Inside Diameter Creeping Wave Sizing Method

PDF Version Also Available for Download.

Description

This paper describes a technique for implementing the ultrasonic inside diameter (ID) creeping wave technique for detection and sizing ID connected defects using a phased array ultrasonic system. The technique uses multiple focal laws to produce the examination modes. The first focal law is designed to create a shear wave nominally at the critical angle for mode conversion to a longitudinal wave at the ID of a part, thus creating a creeping wave. This focal law is focused at the ID to improve sensitivity. The rest of the laws are designed to create tandem sound paths that progress up a ... continued below

Creation Information

McJunkin, Timothy R.; Davis, J. Mark; Kunerth, Dennis C. & Watkins, Arthur D. May 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes a technique for implementing the ultrasonic inside diameter (ID) creeping wave technique for detection and sizing ID connected defects using a phased array ultrasonic system. The technique uses multiple focal laws to produce the examination modes. The first focal law is designed to create a shear wave nominally at the critical angle for mode conversion to a longitudinal wave at the ID of a part, thus creating a creeping wave. This focal law is focused at the ID to improve sensitivity. The rest of the laws are designed to create tandem sound paths that progress up a vertical surface directly above the focal point of the creeping wave generation point. When a defect on the inner surface is detected with the creeping wave, the height of the defect can be measured from the response of a set of tandem laws without readjusting the position of the probe. Results from standard one-inch long notches of varying depths are presented.

Source

  • 5th International Conference on NDE in Relation to Strutural Integrity for Nuclear & Pressurized Com,San Diego, CA,05/10/2006,05/12/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00980
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911768
  • Archival Resource Key: ark:/67531/metadc890326

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 6:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

McJunkin, Timothy R.; Davis, J. Mark; Kunerth, Dennis C. & Watkins, Arthur D. Ultrasonic Phased Array Implementation of the Inside Diameter Creeping Wave Sizing Method, article, May 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc890326/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.