Tc and Re Behavior in Borosilicate Waste Glass Vapor HydrationTests

PDF Version Also Available for Download.

Description

Technetium (Tc), found in nuclear waste, is of particularconcern with regard to long-term waste storage because of its longhalf-life and high mobility in the environment. One method ofstabilization of such waste is through vitrification to produce a durableborosilicate glass matrix. The fate of Tc under hydrothermal conditionsin the Vapor Hydration Test (VHT) was studied to assess and possiblypredict the long-term rate of release of Tc from borosilicate wasteglass. For comparison, the fate of rhenium (Re), the preferrednon-radioactive surrogate for Tc, was similarly studied. X-ray absorptionspectroscopy (XAS) and scanning electron microscopy (SEM) measurementswere made on each original borosilicate glass and the ... continued below

Creation Information

McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Shuh,David K. & Pegg, Ian L. November 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Technetium (Tc), found in nuclear waste, is of particularconcern with regard to long-term waste storage because of its longhalf-life and high mobility in the environment. One method ofstabilization of such waste is through vitrification to produce a durableborosilicate glass matrix. The fate of Tc under hydrothermal conditionsin the Vapor Hydration Test (VHT) was studied to assess and possiblypredict the long-term rate of release of Tc from borosilicate wasteglass. For comparison, the fate of rhenium (Re), the preferrednon-radioactive surrogate for Tc, was similarly studied. X-ray absorptionspectroscopy (XAS) and scanning electron microscopy (SEM) measurementswere made on each original borosilicate glass and the correspondingsample after the VHT. Tc K-edge XAS indicates that, despite starting withdifferent Tc(IV) and Tc(VII) distributions in each glass, bothcorresponding VHT samples contain 100 percent Tc(IV). The Tc reductionwithin the VHT samples may be driven by simultaneous oxygen depletionfrom corrosion of the surrounding stainless steel vessel. From SEManalyses, both of the Tc-containing VHT samples show complete alterationof the original glass, significant Tc enrichment near the sample surface,and nearly complete depletion of Tc toward the sample center. XASindicates Tc(IV)O6 octahedra, possibly within gel-like amorphoussilicates in both VHT samples, where Tc-Tc correlations are observed inthe higher Tc-content VHT sample. Re LII-edge XAS and SEM indicate quitedifferent behavior for Re under VHT conditions. Re oxidation stateappears to be invariant with respect to the VHT treatment, whereperrhenate (Re(VII)) species are dominant in all Re-containing samplesinvestigated; Re2O7 concentrations are low NEAR the sample surface andincrease to approach the concentration of the un-reacted glass toward thesample center.

Source

  • Journal Name: Environmental Science and Technology; Journal Volume: 41; Journal Issue: 2; Related Information: Journal Publication Date: 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61960
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 902803
  • Archival Resource Key: ark:/67531/metadc890242

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 30, 2016, 12:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Shuh,David K. & Pegg, Ian L. Tc and Re Behavior in Borosilicate Waste Glass Vapor HydrationTests, article, November 1, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc890242/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.