Trajectory Stability Modeling And Tolerances in the LCLS

PDF Version Also Available for Download.

Description

To maintain stable performance of the Linac Coherent Light Source (LCLS) x-ray free-electron laser, one must control the electron trajectory stability through the undulator to a small fraction of the beam size. BPM-based feedback loops running at 120 Hz will be effective in controlling jitter at low frequencies less than a few Hz. On the other hand, linac and injector stability tolerances must be chosen to limit jitter at higher frequencies. In this paper we study possible sources of high frequency jitter, including: (1) steering coil current regulation; (2) quadrupole magnet transverse vibrations; (3) quadrupole current regulation with transverse misalignments; ... continued below

Physical Description

3 pages

Creation Information

Wu, J. & Emma, P. April 27, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To maintain stable performance of the Linac Coherent Light Source (LCLS) x-ray free-electron laser, one must control the electron trajectory stability through the undulator to a small fraction of the beam size. BPM-based feedback loops running at 120 Hz will be effective in controlling jitter at low frequencies less than a few Hz. On the other hand, linac and injector stability tolerances must be chosen to limit jitter at higher frequencies. In this paper we study possible sources of high frequency jitter, including: (1) steering coil current regulation; (2) quadrupole magnet transverse vibrations; (3) quadrupole current regulation with transverse misalignments; (4) charge variations coupled to jitter through transverse wakefields of misaligned RF structures; and (5) bunch length variations coupled through coherent synchrotron radiation in the bunch compressor chicanes. Based on this study, we set component tolerances and estimate expected trajectory stability in the LCLS.

Physical Description

3 pages

Source

  • Prepared for European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 Jun 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12491
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 902722
  • Archival Resource Key: ark:/67531/metadc890188

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 27, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 26, 2017, 3:44 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, J. & Emma, P. Trajectory Stability Modeling And Tolerances in the LCLS, article, April 27, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc890188/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.