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Abstract

Forecasts from seven air quality models and surface ozone data collected over the east-

ern USA and southern Canada during July and August 2004 provide a unique oppor-

tunity to assess benefits of ensemble-based ozone forecasting and devise methods to im-

prove ozone forecasts. In this investigation, past forecasts from the ensemble of mod-

els and hourly surface ozone measurements at over 350 sites are used to issue deter-

ministic 24-h forecasts using a method based on dynamic linear regression. Forecasts

of hourly ozone concentrations as well as maximum daily 8-h and 1-h averaged concen-

trations are considered. It is shown that the forecasts issued with the application of this

method have reduced bias and root mean square error and better overall performance

scores than any of the ensemble members and the ensemble average. Performance of

the method is similar to another method based on linear regression described previously

by Pagowski et al., but unlike the latter, the current method does not require measure-

ments from multiple monitors since it operates on individual time series. Improvement

in the forecasts can be easily implemented and requires minimal computational cost.

Keywords: Photochemical air quality; Modeling; Ozone; Ensemble forecast
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1. Introduction

Future behavior of nonlinear dynamical systems, such as the atmosphere, is crucially

dependent on the initial state and forcings, and for this reason, its prediction with

numerical models is inherently uncertain due to the errors in initial and boundary

conditions, physical parameterizations, and numerics (e.g. Kalnay, 2003). To account

for the range of possible solutions using ensembles in weather forecasting is a common

practice at meteorological centers around the world. However, this practice is rare in air

quality modeling despite the fact that the rationale for using ensembles in air quality

forecasting is at least as strong as for weather forecasting. In addition to inaccuracies

in reproducing physical states of the atmosphere provided by atmospheric models,

uncertainty is enhanced by the complexity of chemical reactions and equations which

attempt to describe them, and the questionable quality of emission inventories (Russell

and Dennis, 2000).

Commonly, ensemble forecasts are used to provide probabilistic distribution of the

future scenario (probabilistic forecasts). They can also be used to provide best estimates

of the future state of the atmosphere (deterministic forecasts). The latter approach is of

sole interest in this paper.

In meteorology, Krishnamurti et al. (1999) used multiple linear regression to improve

forecasts by specifying weights for members of ensemble of models (superensemble).

Hou et al. (2001) observed that averaged ensemble short-term forecasts generally verify

better against observations than any ensemble member. Shin and Krishnamurti (2003)

demonstrated that the dynamic linear regression (DLR, hereafter) provides superior

forecasts of precipitation compared with the regular regression. In air quality, Vautard

et al. (2001) and Delle Monache and Stull (2003) adopted the idea of ensemble-based
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air quality forecasting to predict ozone over Europe, employing different atmospheric

and air quality models, chemical mechanisms, and initial as well as lateral boundary

conditions. Ozone forecasts obtained by ensemble averaging were shown to perform

better than any single ensemble member. Recently, Pagowski et al. (2005), using

ensemble forecasts of surface ozone over the eastern U.S.A. and southern Canada,

showed that overall statistics of the ensemble forecasts can be improved compared to

averaging with the application of linear regression, while McKeen et al. (2005) discussed

advantages of bias removal methods for the same data. Also, Delle Monache et al.

(2005a and b) applied the Kalman filter to ensemble members and ensemble average to

reduce bias of the ozone forecasts over the Southwest British Columbia, Canada.

During summer 2004, seven air quality models participated in the International

Consortium for Atmospheric Research on Transport and Transformation/New England

Air Quality Study (ICARTT/NEAQS) conducted over the eastern U.S.A. and southern

Canada. The models included AURAMS (A Unified Regional Air-quality Modeling

System), BAMS (Baron Advanced Meteorological System) MAQSIP (Multiscale Air

Quality Simulation Platform) at 45-km and 15-km resolution, CHRONOS (Canadian

Hemispheric and Regional Ozone and NOx System), CMAQ/ETA (Community

Multiscale Air Quality Model/ETA), STEM-2K3 (Sulphur Transport and Emissions

Model – 2003), and WRF/Chem (Weather Research and Forecast model/Chemistry

version). These models provided daily forecasts of ozone from 6 July to 30 August 2004.

Hourly averaged ozone surface ozone concentration at multiple locations in the eastern

U.S.A. and Canada are stored in the Aerometric Information Retrieval Now (AIRNow)

database. From this database, measurements at over 350 locations could be used for

verification of models.
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The ozone observations, their processing for verification, and models are described

in section 2. Subsequently, a method to obtain a deterministic forecast with DLR is

described with details given in the appendix. Next, results of the application method

and its verification and comparison with the performance of single models and the

ensemble mean are discussed. Summary and conclusions are provided in the final

section.

2. Description of data

a. Observations

Surface ozone data used in this study comprises hourly measurements at over 350 sites

from 0000 UTC 6 July to 0000 UTC 30 August 2004 (56 days). Figure 1 shows locations

of the sites, the AIRNow site classification, and outline of the domain of model overlap,

as well as the latitude/longitude belt for sites used in plotting Fig. 2. Figure 2 shows the

temporal variability of the maximum daily 8-h averaged ozone concentrations for the

sites confined within the latitude/longitude belt in Fig. 1. It can be seen that summer

2004 was characterized by few high ozone episodes, a result of cool and rainy weather.

Out of 16480 observations, only 87 exceeded the EPA mandated 85 ppbv threshold for

the maximum daily 8-h averaged ozone concentration, and there were no observations

above the 125 ppbv threshold for the maximum daily 1-h averaged ozone concentration.

The small number of observations of the elevated ozone during this summer limits our

ability to assess performance of the models and the proposed method with respect to

the above thresholds.
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b. Models

Below, a brief description of the models and data processing for evaluation is given.

Detailed information is available in McKeen et al. (2005).

AURAMS (Moran et al., 1998) is a Canadian off-line air quality model with gas-

phase chemistry based on the ADOM II mechanism and size- and chemically-resolved

representation of aerosol microphysics and gas-aerosol interaction (Gong et al., 2003).

Meteorological fields are supplied by the Global Environmental Model (GEM, Côtè et

al., 1998a, b), which is the operational weather forecasting model of the Meteorological

Service of Canada. National inventories for Canada for 1990 and national inventories

for U.S.A. for 1990 projected to 1995 were processed with the Canadian Emission

Processing System (CEPS, Moran et al., 1997). The horizontal grid resolution of this

model is equal to 42 km.

MAQSIP (McHenry et al., 2004) is a chemical model that uses the modified Carbon-

Bond 4 chemistry mechanism (Gery et al., 1989) with additions and modifications by

DeMore et al. (1994), Chang et al. (1996), Carter (1996), Kasibhatla et al. (1997),

and McHenry and Coats (2003). It is driven off-line by the Penn State/NCAR MM5

mesoscale model (Grell et al., 1994). Emissions are provided by Sparse Matrix Operator

Kernel Emissions system (SMOKE, Coats, 1996). MAQSIP provided forecasts at 45-km

and 15-km resolutions.

CHRONOS (Pudykiewicz et al., 1997) is a Canadian operational air quality model

with gas-phase chemistry very similar to AURAMS, and aerosol chemistry based on

bulk aerosol representation for PM2.5 (primary and secondary) and coarse PM (primary

only). Meteorological input comes from GEM, and emissions inventories processed

similarly as for AURAMS. CHRONOS provided forecasts at 21-km resolution.
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CMAQ (Byun and Ching, 1999) in the current configuration uses the Carbon-Bond

4 gas-phase chemistry mechanism and tri-modal size distribution for aerosol chemistry

(Binkowski and Shankar, 1995). The chemical model is driven off-line by NWS/NCEP

Eta forecasts. Emissions are supplied by SMOKE. CMAQ was run at 12-km resolution.

STEM-2K3 (Carmichael et al., 2003) employs the SAPRC-99 gas-phase chemistry

mechanism (Carter, 2000) with detailed treatment of aerosols (Tang et al., 2004).

Meteorological fields are supplied by the MM5 model in the off-line mode. Emissions

are processed using EPA NEI-99 (EPA, 2004) inventory and the IGAC-GEIA archive

(Guenther et al., 1995). Resolution of the model was equal to 12 km.

WRF/Chem (Grell et al., 2005) is an on-line air quality model in which chemistry

is fully coupled with meteorology, and concentrations of gaseous and aerosol species

are calculated simultaneously with physics. Gas-phase chemistry is based on the

RADM2 mechanism (Stockwell et al., 1995) and parameterization of aerosols is based

on Binkowski and Shankar (1995), Ackermann et al. (1998), and Schell et al. (2001). As

in the STEM-2K3, EPA NEI-99 (EPA, 2004) emissions inventories were used. Model was

run at 27-km resolution. Results from this model differ from those previously analyzed

by Pagowski et al. (2005) and McKeen et al. (2005) in that the current simulations were

performed with an improved emission inventory.

In the current study, only 24-h forecasts of the chemical models issued at 0000 UTC

(0600 UTC for CMAQ) were used. No interpolation was applied for verification, but

model values were matched with the site measurements located within the grid cell. For

consistency with observations, results from models output at the top of the hour were

averaged temporally.
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It can be noted that the models use different emission inventories and employ different

emission modeling systems. Also, horizontal resolution varies from 12 km to 42 km, and

the vertical resolution of the models is quite different. Since the focus of this paper is

on the application of the technique and not on model evaluation, individual models are

simply labeled with random capital letters.

3. Description of the method

In contrast to static linear models, which assume that properties of investigated

processes do not change in time, dynamic linear models allow for temporal evolution of

the characteristics of these processes. Following West and Harrison (1989), the dynamic

linear model is defined as

Y (t) = F(t)Θ(t) + ν(t), ν(t) ∼ N (0, V (t)) , (1a)

Θ(t) = Θ(t − 1) + w(t), w(t) ∼ N (0,W(t)) , (1b)

where Y is an observation, vector F is a regressor, and Θ is a state vector. It is assumed

that observation (ν(t)) and model (w(t)) errors are uncorrelated, and have normal

distribution with zero mean and variances V and W, respectively. In the case of

the ensemble, vector F contains ensemble member forecasts, and vector Θ contains

weights for the ensemble members. West and Harrisson (1989, pp. 60–71, pp. 117–121)

show that if the observational error variance is constant but unknown, estimate of its

inverse has a Gamma distribution and can be found recursively. Error variance of the

weights (W) may be assigned based on the discount factor approach in which the initial

assumed variance is multiplied by a constant factor at each forecast time (ibid, pp. 57–

60). Shin and Krishnamurti (2003) applied this algorithm to predict precipitation with
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several atmospheric models. Here, we follow the same method. Further details on the

algorithm are given in the appendix.

The adaptive nature of the algorithm, which requires very little training, presents an

alternative to Model Output Statistics (MOS), where a longer time series (not available

for ensemble ozone forecasts) is necessary to establish regression coefficients.

4. Application and performance of the method

To obtain the deterministic ozone forecast at time t+24h, the DLR is used to calculate

weights which are subseqently applied to ensemble members’ forecasts at time t and

then using observations and past forecasts at times t − 24h, t − 48h, . . . , mod(t, 24)h.

If a forecast of any of the ensemble members or an observation at a site is not available

at time t weights computed for the latest of the previous times, t − k × 24h are used to

issue a deterministic forecast. Alternatively, a forecast can be issued by applying DLR

to a smaller ensemble of available members. The above procedure is repeated for each

measurement site. A typical filter performance is illustrated in Fig. 3a, showing a 5-day

time series of observations and 24-h forecasts with DLR and ensemble average (AVE)

at a selected location. In Fig. 3b the variability of weights during this period is shown.

It can be noted that the forecast with the equal weights has a systematic positive bias,

which is largely removed by the application of the weights. Analysis of this and other

time series shows that the magnitude of the weights varies strongly during the day, but

much weaker on a day-to-day basis. This observation justify our preference to use in the

DLR only the past forecasts at the same time of a day, rather than all the available past

forecasts.

Overall statistics of the forecasts for the DLR ensemble, AVE ensemble, and individ-

ual models are given in Table 1. Bias, root mean square error (RMSE), and correlation
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(Corr) were calculated for time series of observations and models at every monitor loca-

tion and averaged over all the sites (in calculating RMSE, MSE was averaged over all

the sites and subsequently its root square was calculated to obtain the RMSE). Con-

fidence intervals at 95% for RMSE and Corr for DLR are (10.55, 10.60) and (0.809,

0.812), respectively, and for AVE are (17.96, 18.06) and (0.764, 0.767), respectively.

It is noteworthy that the DLR forecasts evaluate better against the observations than

any model or ensemble average. Especially significant is the decrease in bias and RMSE,

while the improvement in correlation is more modest. As pointed out previously for this

data, the ensemble average generally has better correlation than the individual models,

but its bias and RMSE can suffer from large errors of some ensemble members (McKeen

et al., 2005). Application of the DLR eliminates this negative effect of the individual

model biases.

The above forecasts were used to calculate daily maxima of 8-h and 1-h averaged

ozone concentrations and the corresponding model performance scores. To assess the

skill of the models, persistence, understood as the matching maximum at the same

location on the previous day, was also included. Scatterplots for the DLR ensemble,

ensemble average, and persistence for daily maxima of 8-h and 1-h averaged ozone

concentrations are shown in Fig. 4. In both cases the plots have similar characteristics.

DLR has the best alignment along y = x line but it underestimates observed high

ozone concentrations for the 1-h maximum. The ensemble average has stronger bias

for the whole range of concentration values, somewhat decreased for the elevated ozone

concentrations. It is apparent that the ensemble average does not reflect the amplitude

of the observed maximum ozone variation. Persistence is very dispersive, suggesting that

it is a poor forecast and is clearly deficient compared with either of the two previous

-11-



models. Bias, RMSE, and Corr for the daily maxima were also calculated for DLR and

AVE ensembles. In addition, these statistics were calculated for results obtained with

a method described by Pagowski et al. (2005) which is also based on linear regression

(labeled SVD for Singular Value Decomposition, a method to solve linear system of

equations, hereafter). The results are given in Table 2. Confidence intervals at 95% for

the daily maximum of 8-haveraged ozone concentrations for RMSE and Corr for DLR

are (9.70, 9.91) and (0.674, 0.691), respectively, for AVE are (13.69, 13.99) and (0.708,

0.723), respectively, and for SVD are (10.00, 10.22) and (0.717, 0.731), respectively.

Corresponding 95% confidence intervals for the same models for the daily maximum of

1-h averaged ozone concentrations are for RMSE (10.89, 11.13), (13.37, 13.67), (11.62,

11.88), and for Corr (0.707, 0.722), (0.703, 0.718), and (0.696, 0.712), respectively.

It can be seen that DLR and SVD methods have similar performance. While bias

and RMSE are substantially reduced for both daily maxima, correlations for all the

methods differ little. An advantage of the DLR method over SVD is that the latter is

only applicable when observations are available from a large number of monitoring sites

so that the system of linear equations remains significantly overdetermined (Pagowski

et al., 2005) while the DLR method can be applied even to a time series from a single

monitoring site after a very short (one-day or so) training period.

Categorical forecasts consist of a statement that a certain event will happen or not,

such as that ozone concentration at a given location will be higher than a certain

threshold. They are very useful in air quality for informing the public about the

predicted health risks associated with atmospheric pollution by associating it with colors

that represent health-exposure risk (McHenry et al., 2004). Categorical forecasts form
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a basis for a contingency table, given in Table 3, and are used to define performance

measures such as bias ratio (BR, Wilks, 1995)

BR ≡
a + b

a + c
, (2)

and equitable threat score (ETS, also called Gilbert’s score, Schaefer, 1990)

ETS ≡
a − ch

a + b + c − ch
, (3)

where ch is given by

ch ≡
(a + b)(a + c)

a + b + c + d
,

where a, b, c, and d stand for a number of events as defined in Table 2. BR is a ratio

of the area forecast to exceed a threshold to the area observed to exceed the threshold.

ETS is a ratio of the area correctly forecast to exceed a threshold to the sum of the

area observed, and the area incorrectly forecast to exceed the threshold. Random chance

ch is subtracted from these areas. Optimal value for both BR and ETS is 1. Negative

values of ETS signal no forecast skill. These two measures are plotted in Fig. 5 for four

thresholds equal to 30, 50, 70 and 85 ppbv for the maximum daily 8-h and 1-h averaged

ozone concentration. Unfortunately, skill of the forecasts cannot be adequately assessed

for higher thresholds, since elevated ozone was rarely observed.

Assessment of the skill of forecasts should account for the fact that larger BR tends

to increase ETS (Hamill, 1999). As one would expect, the forecast area of persistence

is very close to the observed (BR ∼ 1). These forecasts are, nevertheless, poor, as is

evident from the scatterplots in Fig. 4 and low ETS’s in Fig. 5. An analysis of Fig. 5

reveals that for the daily maximum of 8-h averaged ozone concentration, the ensemble

average has very large BR’s for the higher thresholds. Even despite that, its ETSs

are lower than those for the DLR ensemble. For the 30-ppbv threshold, its skill is even
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smaller than for the persistence forecasts. The DLR ensemble is clearly superior to

either of the other two. The assessment of the relative performance of ensembles is more

complicated for the daily maximum of 1-h averaged ozone concentration. Here, slightly

smaller, but still large, values of BR for the ensemble average can be seen in Fig. 5.

Compared to the DLR ensemble, its ETSs are lower for the two lower thresholds and

higher for the higher thresholds, undoubtedly due to the effect of increased BR on ETS.

BR and ETSs of the DLR ensemble are comparable to the same measures for the daily

maximum of 8-h averaged ozone concentration except for the highest threshold, where

the elevated ozone is clearly underpredicted. It is possible that due to the rarity of high

ozone episodes in summer 2004, no sufficient training data for DLR existed to calculate

weights adequate for short-term elevated ozone concentrations.

5. Summary and conclusions

A method based on dynamic regression fitting of 24-h forecasts from an ensemble of

air quality models to observations was applied to predict surface ozone concentrations.

The resulting forecasts had significantly smaller bias and RMSE, in comparison with the

same statistics computed for the ensemble average or single models. Performance of the

method is similar to that described by Pagowski et al. (2005). Advantage of the DLR

method over the latter is that the latter method is only applicable when observations

are available from a large number of monitoring sites so that the system of linear

equations remains significantly overdetermined (Pagowski et al., 2005) while the DLR

method can be applied even to a time series from a single monitoring site after a short

training period.

Also, with the application of the DLR method, the equitable threat score of the 24-h

forecasts calculated for the maximum daily 8-h and 1-h averaged ozone concentration
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had consistently higher values over a range of thresholds. The most appealing feature of

the method is its fast adaptability, giving it an advantage over static regression, which

requires a much larger data series for training.

While deterministic forecasts based on an ensemble of models are issued to provide

the best estimate of a future state, they inevitably result in a loss of information by

reducing a probabilistic solution to a categorical one. The advantage, in terms of an

economic value of certain probabilistic over deterministic forecasts in meteorology,

was shown by Zhu et al. (2002). A future study to address the economic benefits of

probabilistic forecasts in air quality using the current dataset is being considered.

APPENDIX

Dynamic linear regression algorithm

Below an algorithm from West and Harrison (1989) is given with some rudimentary

explanations without proofs which can be found in the original work.

It can be shown that for a process defined in Eq. 1, when the observational error

variance (V ) is constant, but unknown, its inverse (φ = V −1) has a Gamma distribution.

Furthermore, the error variance of the state vector has Student T distribution with zero

mean and variable variance. Below the new formulation of the process is given.

Y (t) = F(t)Θ(t) + ν(t), ν(t) ∼ N (0, V ) , (A.1a)

Θ(t) = Θ(t − 1) + w(t), w(t) ∼ T(0,W(t)) . (A.1b)

With the model specified as above, the following distributional results are valid at each

time t:

(Θ(t − 1) | D(t − 1)) ∼ Tn(t−1) [m(t − 1),C(t− 1)] , (A.2a)
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(Θ(t) | D(t − 1)) ∼ Tn(t−1) [m(t),R(t)] , (A.2b)

(φ | D(t − 1)) ∼ G [n(t − 1)/2, d(t− 1)/2] , (A.2c)

(Y (t) | D(t − 1)) ∼ Tn(t−1) [f(t), Q(t)] , (A.2d)

where the probablity is conditional on the existing information about the time series up

to and including t − 1 (D(t − 1) stands for the information available at time t − 1),

m is the mean value of the state vector used to issue forecast f = Fm, n is the time

counter, parameter d is given below, and C, R and Q are state vector and observational

variances about the mean, respectively. Updated state vector variance C is calculated

from a recurrence relationship given below, while variances R and Q are calculated from

R(t) = C(t − 1) + W(t) , (A.3a)

Q(t) = F(t)R(t)FT(t) + S(t − 1) , (A.3b)

with S being a prior estimate of the variance V . The following recurrence relationships

provide the method to update variance and the mean of the state vector and to issue

the forecast f :

(Θ(t) | D(t)) ∼ Tn(t) [m(t),C(t)] , (A.4a)

(φ | D(t)) ∼ G [n(t)/2, d(t)/2] , (A.4b)

where

m(t) = m(t − 1) + A(t)e(t) , (A.5a)

C(t) = (S(t)/S(t − 1))
[

R(t) − m(t)mT(t)Q(t)
]

, (A.5b)

n(t) = n(t − 1) + 1 , (A.5c)

d(t) = d(t − 1) + S(t − 1)e2(t)/Q(t) , (A.5d)
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S(t) = d(t)/n(t) , (A.5e)

e(t) = Y (t) − f(t) , (A.5f)

A(t) = R(t)F(t)/Q(t) . (A.5g)

The only remaining unknown in the above recursion is the process error variance W.

It is calculated assuming a constant rate of increase of uncertainty of the state vector

variance R by assigning

R(t) = C(t − 1)/δ , (A.6a)

and from Eq. A.3a

W(t) = C(t − 1)(1 − δ)/δ , (A.6b)

where δ is a discount factor and 0 < δ ≤ 1.

The evolution of the process is little dependent on the initial estimates of the

observational error variance S, state vector variance C, and the state vector mean m

which need to be specified on entry.
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Tables and Captions

TABLE 1. Bias (ppb), RMSE (ppb), and correlation (unitless) for hourly forecasts of

surface ozone concentrations with DLR ensemble, averaged ensemble, and single models.

Model Bias RMSE Corr

DLR 0.91 10.57 0.810

AVE 12.70 18.01 0.765

A 5.32 17.50 0.668

B 8.01 18.13 0.616

C 9.33 18.81 0.631

D 11.53 24.16 0.696

E 14.83 21.40 0.651

F 31.16 37.45 0.549

G 8.77 16.52 0.721

TABLE 2. Bias (ppb), RMSE (ppb), and correlation (unitless) for maximum daily 8-

h and 1-h averaged surface ozone concentrations calculated from hourly forecasts with

DLR ensemble, averaged ensemble, and single models.

Model 8-h max 1-h max

Bias RMSE Corr Bias RMSE Corr

DLR 0.36 9.80 0.683 -2.96 11.01 0.715

AVE 7.98 13.12 0.715 6.91 13.52 0.710

SVD 0.51 10.11 0.724 0.95 11.75 0.704

TABLE 3. Contingency table as a basis for categorical forecasts.

Observed YES Observed NO

Forecast YES a b

Forecast NO c d

-23-



Figure Captions

FIG. 1. Locations of the sites, the AIRNow site classification, and outline of the

domain of model overlap. Also, latitude/longitude hatching for sites used in plotting

Fig. 2 is shown.

FIG. 2. Temporal variability of the maximum daily 8-h averaged ozone concentrations

for the bin-averaged sites confined within the shown latitude/longitude belt. Contours of

temperature at 900 mb are overlaid.

FIG. 3. Comparison of observations (red), DLR ensemble (purple), and ensemble

average (blue) for a time series at a particular ozone monitor (a) and weights (b). The

different colors in the figure b signify different models.

FIG. 4. Scatterplots for DLR ensemble (a,d), ensemble average (b,e), and persistence

(c,f) for the daily maximum of 8-h (top) and 1-h (bottom) averaged ozone concentra-

tion.

FIG. 5. Bias ratio (a,c) and equitable threat score (b,d) for DLR ensemble, ensemble

average, persistence or the daily maximum of 8-h (top) and 1-h (bottom) averaged

ozone concentration.
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