Using Uncertainty to Guide Characterization, Closure and Long-term Management of an Underground Nuclear Test Site

PDF Version Also Available for Download.

Description

No feasible remediation technology has been identified for nuclear test cavities such that site management and institutional controls must be relied on to minimize the possibility of public exposure to these legacies of the Cold War. The most common exposure pathway of concern is migration of radionuclides with groundwater. Prediction of flow and transport behavior in the sparsely observed subsurface environment is inherently uncertain, but developing effective management strategies demands such predictions. An agreement between the U.S. Department of Energy (DOE) and the State of Nevada provides a framework for addressing uncertainty in site management decisions. The central element of ... continued below

Creation Information

Chapman, J.; Pohll, G.; Hassan, A. & Pohlmann, K. January 9, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

No feasible remediation technology has been identified for nuclear test cavities such that site management and institutional controls must be relied on to minimize the possibility of public exposure to these legacies of the Cold War. The most common exposure pathway of concern is migration of radionuclides with groundwater. Prediction of flow and transport behavior in the sparsely observed subsurface environment is inherently uncertain, but developing effective management strategies demands such predictions. An agreement between the U.S. Department of Energy (DOE) and the State of Nevada provides a framework for addressing uncertainty in site management decisions. The central element of the framework is calculation of a predictive contaminant boundary at a specified confidence interval. This boundary is defined as a three-dimensional region encompassing all groundwater that contains radionuclides at concentrations higher than Safe Drinking Water Act limits at any time through a 1,000-year period, at a 95-percent confidence interval. In the process of predicting this boundary at the Shoal underground nuclear test site in rural Nevada, some interesting challenges were encountered. A stochastic groundwater flow and transport model was developed for the site using historic site data and information from four characterization wells drilled in 1996. Though the predicted mean transport plume was located within the existing site land boundary, uncertainty in the predictions was very large such that the 95-percent confidence interval extended beyond the site boundary. This level of uncertainty was unacceptable to DOE, prompting additional site characterization with the goal of reducing the uncertainty in contaminant migration predictions. The numerical groundwater flow model was used to identify the optimum data collection activities for uncertainty reduction. This Data Decision Analysis guided drilling and testing of additional wells. Significant revision occurred to the groundwater model as a result of the new data. The revised model was deemed acceptable by both DOE and the State of Nevada, and has been used to determine the contaminant boundary for the site, the calculation of which required choices regarding risk or concentration metrics and whether to focus on the uncertainty of where the contaminants might be or where the groundwater is free of contaminants. The model was also used to develop an optimum monitoring system, the installation of which provided another opportunity to reduce uncertainty as data were collected for model validation. The short-term validation process, and long-term monitoring, provide data that can feed back into the stochastic flow and transport model to cull poorly performing model realizations and reduce uncertainty in the model predictions.

Source

  • Abstract for: 2007 International Symposium on Technology and Society, University of Nevada, Las Vegas, June 1 and 2, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ABS-2007-3
  • Grant Number: DE-AC52-06NA26383
  • Office of Scientific & Technical Information Report Number: 898970
  • Archival Resource Key: ark:/67531/metadc890081

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 9, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 9, 2016, 10:30 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chapman, J.; Pohll, G.; Hassan, A. & Pohlmann, K. Using Uncertainty to Guide Characterization, Closure and Long-term Management of an Underground Nuclear Test Site, article, January 9, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc890081/: accessed August 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.