Multiphase Flow in Complex Fracture Apertures under a Wide Range of Flow Conditions

PDF Version Also Available for Download.

Description

A better understanding of multiphase flow through fractures requires knowledge of the detailed physics of interfacial flows at the microscopic pore scale. The objective of our project was to develop tools for the simulation of such phenomena. Complementary work was performed by a group led by Dr.~Paul Meakin of the Idaho National Engineering and Environmental Laboratory. Our focus was on the lattice-Boltzmann (LB) method. In particular, we studied both the statics and dynamics of contact lines where two fluids (wetting and non-wetting) meet solid boundaries. Previous work had noted deficiencies in the way LB methods simulate such interfaces. Our work ... continued below

Physical Description

352951 bytes

Creation Information

Rothman, Daniel H. December 12, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A better understanding of multiphase flow through fractures requires knowledge of the detailed physics of interfacial flows at the microscopic pore scale. The objective of our project was to develop tools for the simulation of such phenomena. Complementary work was performed by a group led by Dr.~Paul Meakin of the Idaho National Engineering and Environmental Laboratory. Our focus was on the lattice-Boltzmann (LB) method. In particular, we studied both the statics and dynamics of contact lines where two fluids (wetting and non-wetting) meet solid boundaries. Previous work had noted deficiencies in the way LB methods simulate such interfaces. Our work resulted in significant algorithmic improvements that alleviated these deficiencies. As a result, we were able to study in detail the behavior of the dynamic contact angle in flow through capillary tubes. Our simulations revealed that our LB method reproduces the correct scaling of the dynamic contact angle with respect to velocity, viscosity, and surface tension, without specification of an artificial slip length. Further study allowed us to identify the microscopic origin of the dynamic contact angle in LB methods. These results serve to delineate the range of applicability of multiphase LB methods to flows through complex geometries.

Physical Description

352951 bytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/FE/63490-2
  • Grant Number: FG07-02ER63490
  • DOI: 10.2172/896229 | External Link
  • Office of Scientific & Technical Information Report Number: 896229
  • Archival Resource Key: ark:/67531/metadc890072

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 12, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • July 13, 2017, 2:45 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rothman, Daniel H. Multiphase Flow in Complex Fracture Apertures under a Wide Range of Flow Conditions, report, December 12, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc890072/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.