Molecular Mechanism of Bacterial Attachment to Fe(III)-Oxide Surfaces

PDF Version Also Available for Download.

Description

To date, our studies have concentrated upon two aspects of the chemistry and architecture of the Shewanella outer membrane surface: the influence of terminal electron acceptor during anaerobic respiration, and the role that protein secretion systems play in determining the presence and chemistry of exopolymers. Using Shewanella oneidensis strain MR-1 and S. putrefaciens strain 200R as model organisms we have developed a microelectrophoresis approach to estimating cell mobility in solution over a range of ionic strengths. From this data, and applying Ohshima's soft particle theory, we have successfully estimated the net electrostatic charge and relative thickness of any capsular material ... continued below

Creation Information

Neal, Andrew June 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

To date, our studies have concentrated upon two aspects of the chemistry and architecture of the Shewanella outer membrane surface: the influence of terminal electron acceptor during anaerobic respiration, and the role that protein secretion systems play in determining the presence and chemistry of exopolymers. Using Shewanella oneidensis strain MR-1 and S. putrefaciens strain 200R as model organisms we have developed a microelectrophoresis approach to estimating cell mobility in solution over a range of ionic strengths. From this data, and applying Ohshima's soft particle theory, we have successfully estimated the net electrostatic charge and relative thickness of any capsular material of the two model strains under various terminal electron acceptor availabilities. Additionally, by employing state-of-the-art cryo-electron microscopy techniques we have been able to not only confirm presence or absence of capsular material but also visualize the outer cell surface architecture in a completely hydrated state.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ERSD-1026700-2006
  • Grant Number: None
  • DOI: 10.2172/896798 | External Link
  • Office of Scientific & Technical Information Report Number: 896798
  • Archival Resource Key: ark:/67531/metadc890011

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:19 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Neal, Andrew. Molecular Mechanism of Bacterial Attachment to Fe(III)-Oxide Surfaces, report, June 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc890011/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.