Combined plate motion and density driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy

PDF Version Also Available for Download.

Description

A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. ... continued below

Physical Description

PDF-file: 21 pages; size: 0 Kbytes

Creation Information

Hansen, S & Schwartz, S February 8, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may contribute to the pattern but is not sufficient to fully explain the observations. We feel that the uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate and density driven flow in the asthenosphere. By combining the northeast oriented flow associated with absolute plate motion with the northwest oriented flow associated with the channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that matches our splitting observations and supports models of active rifting processes. This explains why the north-south orientation of the fast polarization direction is so pervasive across the vast Arabian Plate.

Physical Description

PDF-file: 21 pages; size: 0 Kbytes

Source

  • Journal Name: Geology, vol. 34, no. 10, October 1, 2006, pp. 869-872; Journal Volume: 34; Journal Issue: 10

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-218810
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 895437
  • Archival Resource Key: ark:/67531/metadc889894

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 8, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 8, 2016, 2:58 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hansen, S & Schwartz, S. Combined plate motion and density driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy, article, February 8, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc889894/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.