Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

PDF Version Also Available for Download.

Description

Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge ... continued below

Creation Information

Meikrantz, David; Garn, Troy; Mann, Nick; Law, Jack & Todd, Terry September 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

Source

  • Global 2007,Boise, ID,09/09/2007,09/13/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-07-12167
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 918179
  • Archival Resource Key: ark:/67531/metadc889835

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 5:27 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Meikrantz, David; Garn, Troy; Mann, Nick; Law, Jack & Todd, Terry. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors, article, September 1, 2007; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc889835/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.