Laboratory tests of mafic, ultra-mafic, and sedimentary rock types for in-situ applications for carbon dioxide sequestration

PDF Version Also Available for Download.

Description

Recent tests conducted at the Albany Research Center have addressed the possibility of in-situ storage of carbon dioxide in geological formations, particularly in deep brackish to saline non-potable aquifers, and the formation of secondary carbonate minerals over time within these aquifers. Various rock types including Columbia River Basalt Group (CRBG) drill core samples, blocks of ultra-mafic rock and sandstone were used. A solution formulated from aquifer data, a bicarbonate salt solution, and distilled water were tested. Pressure and temperature regimens were used to mimic existing in-situ conditions, higher temperatures were used to simulate longer time frames, and higher pressures were ... continued below

Creation Information

Rush, G.E.; O'Connor, William K.; Dahlin, David C.; Penner, Larry R. & Gerdemann, Stephen J. January 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent tests conducted at the Albany Research Center have addressed the possibility of in-situ storage of carbon dioxide in geological formations, particularly in deep brackish to saline non-potable aquifers, and the formation of secondary carbonate minerals over time within these aquifers. Various rock types including Columbia River Basalt Group (CRBG) drill core samples, blocks of ultra-mafic rock and sandstone were used. A solution formulated from aquifer data, a bicarbonate salt solution, and distilled water were tested. Pressure and temperature regimens were used to mimic existing in-situ conditions, higher temperatures were used to simulate longer time frames, and higher pressures were used to simulate enhanced oil recovery (EOR) pressure. Results are encouraging, indicating mineral dissolution with an increase of desirable ions (Ca, Fe2+, Mg) in solution that can form the carbonate minerals, calcite (CaCO3), siderite (FeCO3), and magnesite (MgCO3).

Notes

Publisher

Source

  • 29th International Technical Conference on Coal Utilization & Fuel Systems, April 18-22, 2004, Clearwater, Florida

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ARC-2004-038
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 895353
  • Archival Resource Key: ark:/67531/metadc889737

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 2:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rush, G.E.; O'Connor, William K.; Dahlin, David C.; Penner, Larry R. & Gerdemann, Stephen J. Laboratory tests of mafic, ultra-mafic, and sedimentary rock types for in-situ applications for carbon dioxide sequestration, article, January 1, 2004; (digital.library.unt.edu/ark:/67531/metadc889737/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.