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The computational modeling of the biodegradation of contaminated groundwater 
systems accounting for biochemical reactions coupled to contaminant transport 
is a valuable tool for both the field engineer/planner with limited computational 
resources and the expert computational researcher less constrained by time and 
computer power. There exists several analytical and numerical computer models 
that have been and are being developed to cover the practical needs put forth by 
users to fulfill this spectrum of computational demands. Generally, analytical 
models provide rapid and convenient screening tools running on very limited 
computational power, while numerical models can provide more detailed 
information with consequent requirements of greater computational time and 
effort. While these analytical and numerical computer models can provide 
accurate and adequate information to produce defensible remediation strategies, 
decisions based on inadequate modeling output or on over-analysis can have 
costly and risky consequences. In this chapter we consider both analytical and 
numerical modeling approaches to biodegradation and reactive transport. Both 
approaches are discussed and analyzed in terms of achieving bioremediation 
goals, recognizing that there is always a tradeoff between computational cost 
and the resolution of simulated systems.  

 

Introduction 
It has long been recognized that quantitative tools are necessary for the 

assessment and management of natural attenuation and bioremediation (for 
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example, see (1)). Typically, mathematical models are used to determine the 
development of subsurface contaminant plumes and to evaluate the effectiveness 
of different bioremediation strategies. A wide range of numerical and analytical 
computer codes is currently available (2), which can be used to solve those 
biodegradation and reactive transport mathematical models. To appropriately 
select and apply computer codes, it is necessary to understand (a) the modeled 
physical system, (b) the modeling scope, (c) the computer code assumptions and 
limitations, and (d) the tradeoff between modeling resolution and computational 
cost. 

 
Reactive bioattenuation examples include processes such as radionuclide 

decay, denitrification, biodegradation of chlorinated solvents, etc.  Consider the 
anaerobic degradation of the most frequently detected organic compounds in 
groundwater, perchloroethylene (PCE) and trichloroethylene (TCE) (3); the 
reaction pathway of PCE and TCE biodegradation is shown in Figure 1 (4, 5). 
PCE reacts to produce TCE; TCE reacts to produce three daughter species, cis-
1,2-dichloroethylene (cis-1,2-DCE), trans-1,2-dichloroethylene (trans-1,2-
DCE), and 1,1-dichloroethylene (1,1-DCE) simultaneously; the three daughter 
species further react to produce vinyl chloride (VC); and VC reacts to produce 
ethylene (ETH) (3, 4).  

 

 
 

Figure1. PCE and TCE degradation pathway.  are the 

first-order reaction rates;  are yield coefficients; and 

1 2 7∀ = L, , , ,ik i

1 2 3 4∀ =, , , ,iy

1 2 3α α α, ,  are product distribution factors of the reduction of 
trichloroethylene (TCE). Dashed lines represent other possible reaction 
ways. 
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       In order to simulate the transport phenomena with the coupled PCE/TCE 
reaction network, the general mass balance equations need to be solved (6): 
 

( ) ( ) 1 2
φ

∂
= −∇ ⋅ −∇ ⋅ + + ∀ =

∂
Lv D c , , ,

s s
i i i

i i i i i
c q cc c f i
t

, n  (1) 

 
where ci [M L-3] is the concentration of ith species; t is time [T]; v [LT-1] is the 
vector of velocity; D [L2T-1] is the tensor of dispersion coefficients; n is the total 
number of species; qs and cs are the source/sink quantity and concentration; f is 
the gain or loss due to reactions. The source/sink term can also be written as 
boundary conditions. Eq 1 can be solved either analytically or numerically based 
on the complexity of the modeled systems. The discussion below focuses on 
how the modeling of complex reactive systems, such as PCE and TCE 
degradation, would be approached for both analytical and numerical solutions. 

 
 
Analytical Modeling of Biodegradation and Reactive Transport 
Scope of Analytical Models 

       After constructing an appropriate mathematical model in terms of relevant 
state variables for problems of interest, the model must be solved either directly 
through analytical means or by employing numerical methods. For the sake of 
speed and efficiency, the preferred method to solve the model is an analytical 
solution; however, most problems of practical interest introduce complexities, 
such as irregular shapes of domain-boundaries, heterogeneities, non-linearities, 
and irregular source functions, which constrain the derivation of an analytic 
solution.  For this reason, numerical methods are employed to solve the 
mathematical model increasing computational effort that increases with 
modeling resolution.   
       The use of numerical and analytical solutions should be viewed as mutually 
complementary.  Sometimes, the complexity of contaminant systems may 
require the use of numerical models to represent, for example, a special 
geometry, heterogeneity, or distributed physical and chemical properties. 
However, computational complexity resulting from the implementation of 
physically and geometrically intricate aspects of a simulation model results in 
increased algorithm detail and a more involved algorithm execution. In addition 
to increased simulation demands, higher labor costs for model development and 
maintenance, and data collection requirements are important concerns, 
especially for numerical models. Because of the advantages of analytical 
solutions, (including efficiency, speed and ease-of-use) it is often preferable to 
simplify a given flow and transport problem to the extent that an analytical 
solution can be obtained.  
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       Often rapid analytical solutions are used to facilitate confident decision-
making, and numerical solutions are applied at more advanced stages of 
bioremediation problem at higher resolution levels.  Also, analytical models are 
required for the verification of the development of numerical codes, which may 
solve very complex problems.  When deciding between the tradeoffs of model 
resolution and computational effort and, therefore, between the employment of 
an analytical model as opposed to a numerical model, one should consider the 
five reasons to use analytical solutions outlined by Javandel et al.  (7 ): 
 

• Where applicable, analytical methods are the most economical 
approach. 

• Analytical methods are probably the most efficient alternative when 
data necessary for identification of the system are sparse and uncertain. 

• Analytical methods are always the most useful means for an initial 
estimation of the order of magnitude of contaminant extent. 

• Analytical models do not require experienced modelers or complex 
numerical codes. 

•  Analytical models, in many cases, provide a rough estimate that can 
be obtained through published tables. When application of simple 
computer codes for evaluation of analytical solutions is needed, the 
input data are usually very simple and do not require a detailed 
familiarity with the codes.  

 
       Discussed in the subsections below are specific examples of how reactive 
transport can be represented and solved analytically.  Note that while we are not 
limiting ourselves in this discussion to a one-dimensional description, in order to 
simplify the presentation of the mathematical model, only a one-dimensional 
case is discussed.  

 
Analytical Models and Solutions 

       Analytical solutions of reactive transport are usually developed under 
relatively simple flow and transport conditions. The differential equations (eq 1) 
governing species transport with first-order reactions in a groundwater system 
are described as (8): 

( ) ( )
2

2
∂ ∂

+ = = − +
∂ ∂
c c Ac, c ∂

∂
L L D v

t x x
 (2) 

 
where c is the vector of concentrations [ML-3]; D is the dispersion coefficient 
[L2T-1]; v is the groundwater velocity [LT-1]; x is the coordinate in the direction 
of flow [L]; and A is the first-order reaction matrix. 
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Figure 2.  Basic reaction patterns. (a) sequential reactions; (b) parallel 
reactions; (c) reversible reactions; and (d) convergent reactions. 

       If vector c becomes a scalar variable c, eq 2 represents the transport system 
of a single species. The reaction matrix is determined by the reaction networks 
(or biodegradation pathways), which can be sequential, parallel, reversible, or 
convergent as illustrated in Figure 2.  
 
      To best review the capabilities along with the necessary assumptions and 
limitations of modeling reactive transport using analytical solutions, we discuss 
three topical modeling examples: single species transport, multiple species 
transport, and reactive transport in fractured rock.  
 
Single Species Transport 

        Ogata (9) and Bear (10) were the first to derive analytical solutions to 
contaminant transport equations for one-dimensional problems. Ogata's solution 
covers advection and dispersion, while Bear's solution added the first-order 
reaction for a single contaminant species. Since these pioneering efforts, the 
development of analytical solutions for contaminant transport problems has 
become an important part of contaminant hydrology. van Genuchten and Alves 
(11) and Toride et al. (12) compiled various analytical solutions for solving the 
one-dimensional solute transport equations. Beljin (13) and Wexler (14) 
reviewed analytical solute transport models for one-, two-, and three-
dimensional systems. However, for all of these solutions the fundamental partial 
differential equations (PDEs) represent the transport of either a nonreactive 
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tracer or a single reactive species. Reactions are assumed to be first-order in 
these solutions and are used primarily to address transport phenomena, rather 
than biochemical reactions.  When these solutions are used to represent 
contaminant transport, the reaction products from biodegradation cannot be 
addressed.  Therefore, these analytical solutions are of the most limited use 
when addressing, for example, one of the most challenging aspects of managing 
chlorinated solvent contaminants: the fact that the degradation daughter products 
are often more toxic than the parent contaminant (15). 
 
Multiple Species Transport 

 
       Since the 1970s there have been efforts to derive analytical solutions for the 
reactive transport of multiple species.  Cho (16) derived an analytical solution to 
a three-species chain with a simple boundary condition. Lunn et al. (17) used the 
Fourier transform method to derive the same solution of three-species chain with 
first-order reactions. van Genuchten (18) used the Laplace transform method 
and extended previous analytical solutions to a four-species chain. Because of 
the complexity of inverse Laplace transforms or other integral transforms, the 
difficulty of deriving analytical solutions for the transport of multiple 
sequentially reactive species increases exponentially with the species number. 
Sometimes, implementation of analytical solutions becomes a tedious process 
because complicated mathematics is involved, and, perhaps worse, there is a 
perceived gap between the development of analytical solutions and practical 
applications. 
 
       In order to bridge this perceived “practicality gap” for analytical solutions, 
Sun et al. (19) derived a linear transform approach, which decomposes a 
reactive transport system coupled by reaction terms into multiple independent 
subsystems with easily derived analytical solutions. 
 
       The transform is defined as a linear function of species concentrations as 
(19): 
 

11
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where ai [ML-3] is the concentration of species i in the transformed domain (“a” 
domain). Then, the system equation coupled by reaction matrix A can be 
simplified as: 

( )∂
+ =

∂
a a ΛaL
t  

(4) 
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where  is a diagonal matrix of n×n containing the first-order reaction rates of 
all species, . By employing this transform, each partial differential 
equation (PDE) in eq 4 becomes independent and may be solved separately. The 
transform significantly reduces the complexity of the coupled reactive transport 
system (eq 2) and, hence, analytical solutions can either exist or can be 
developed. The solution scheme of Sun et al. (19) extended the analytical 
solution capabilities from four species to an unlimited number of species. 
However, this method is only limited to serial reaction patterns or the parallel 
reaction networks that can be further decomposed to serial patterns. Sun et al. 
(20) extended this work by deriving an analytical solution of first-order decay 
chain in multiple phases using this transformation. 

Λ
1 2= L, , , ,ik i n

 
       Clement (21) mathematically proved Sun et al.'s (19) transform and 
illustrated that singular value decomposition (SVD) can be used to derive 
analytical solutions of transport with convergent reactions. When SVD is used, 
analytical solutions become available for convergent and reversible reactions. 
For instance, if the reaction matrix, A, is a diagonalizable matrix, it can be 
written as: 
 

1−A = SΛS  (5) 
 
where  is a diagonal matrix containing the eigenvalues of A, and S is a matrix 
whose columns are linearly independent eigenvectors of A. For the sequential 
first-order reactions,  in eq 5 is exactly the diagonal matrix  in eq 4. 
Substituting eq 5 into eq 2 yields 

Λ

Λ Λ

 

( ) 1−∂
+

∂
c c = SΛS cL
t  

(6) 

 
Multiplying by S-1, eq 6 becomes eq 4 where a=S-1 c. 
 
 
   Each PDE in eq 4 is independent of other PDEs. The analytical solutions of 
eq 4, in terms of a, are available for a variety of boundary conditions. Finally, 
the solution of c can be derived as C =S a.  
 
       Clement (21) solved the SVD method numerically for the transform 
matrices while the solutions were derived semi-analytically. Lu et al. (8) derived 
a closed-form solution of TCE transport with the convergent reactions using 
SVD. The analytical solution of Lu et al. (8) demonstrated the significance of 
considering the convergent reactions. Sun et al. (20) extended  Lu et al.'s work 
and derived analytical solutions for the entire PCE reaction network (Figure 1).  
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       Note that all of the linear systems discussed above (19, 21, 8, 20) have a 
fundamental assumption that all represented species share the same retardation 
factor. Eykholt and Li (22) developed a semi-analytical solution of a linear 
reaction network with different retardation factors using a response function 
approach. Since numerical convolution is involved, the method is less 
transparent, more difficult to employ, and, ultimately, difficult to implement as a 
screening/planning tool. Bauer et al. (23) developed a Laplace domain solution 
using a recursive form for a different retardation system. The concentration of a 
daughter species is expressed as a linear function of ancestor concentrations, and 
the factor of each species concentration is calculated using the recursive form. 
Quezada et al. (24) used Laplace transformation and linear transformation to 
decouple the first-order reactive system with distinct retardation factors. Though 
both Bauer et al. (23) and Quezada et al. (24) have made significant progress in 
first-order reactive transport, the complexity of inverse Laplace transforms 
makes code implementation difficult. When numerical inverse Laplace 
transforms are involved, the approach becomes even more complicated. Both the 
Eykholt and Li (22) and the Bauer et al. (23) approaches are based on a 
unimolar assumption, that is, the stoichiometry of the reaction is such that one 
mole of product is produced by consuming one mole of reactant.  
 
 
Reactive Transport in Fractured Rock 

       The potential geologic repository for high-level nuclear waste at Yucca 
Mountain, much of which is comprised of a fractured volcanic tuff, has led to an 
increased interest in the behavior of radionuclide transport in fractures and in 
better understanding ground water flow and transport in fractured rock (e.g., 25, 
26). Starting from a single or from a few parallel fractures in the rock matrix, 
several studies have focused on deriving analytical solutions. Tang et al. (27) 
developed an analytical solution to a mathematical model and investigated the 
fundamental dynamics of the transport of a single radionuclide along a single 
fracture. Sudicky and Frind (28) extended this solution to multiple parallel 
fractures, and, later, they derived an analytical solution for the reactive transport 
of a two-member decay chain in the single fracture (29). Cormenzana (30) 
provided a simplified form of the Sudicky and Frind (29) solution. Because of 
the difficulties involved in inverse Laplace transforms, analytical solutions for 
transport in fractured systems are limited to one or two species. To avoid the 
difficulties noted by Sudicky and Frind (29) in extending their approach to 
multiple species, the transformation of Sun et al. (19) was employed to 
decompose the partial differential equations, which are coupled by reaction 
terms into independent subsystems. Then, the solution to single species transport 
in the single fractured system can be applied to derive solutions to N-member 
solvable decay chains (31).  
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Numerical Modeling of Biodegradation and Reactive 
Transport 

 
   Analytical and numerical models of biodegradation and reactive transport 
are always complementary. Compared with analytical solutions, numerical 
methods provide inexact solutions with fewer simplifying assumptions. 
Additionally, numerical solutions can be used to simulate transport within 
complex hydrogeologic systems coupled with multiple reactions for which 
reaction stoichiometry and networks vary spatially and temporally. The 
hydrogeologic systems can be heterogeneous and anisotropic, and flow systems 
can be transient with complex initial and boundary conditions. Numerical 
methods have been successfully and routinely employed for simulating 
biodegradation and reactive transport (32, 33, 34, 35, 36, 37, 2, 38, 39, 40). 

 
Operator-split Numerical Approach 

       Operator-split strategy is the best practical approach (41) to solve the partial 
differential equations coupled by reactions, although many other numerical 
solution schemes exist. In the operator-split approach, the partial-differential-
equation system (eq 1) can be split into a few subsystems (Table I): advection, 
dispersion, source/sink-mixing, and reactions, which are then solved using 
appropriate approaches (35, 41). 
 
Table I. Operator-split Components 
 

PDEs Advection Dispersion Source/ 
Sink-mixing 

Reactions 

∂ =∂
ic

t  −∇ ⋅ vi ic  ( )∇ ⋅ ∇ ⋅Di ic  
φ

i i

s sq c  ( )cf  

1 2∀ = L, , ,i n  
 
In the basic reactive transport equation (eq 1), advection, dispersion, and 
source/sink-mixing are species-independent. The velocity and dispersion 
coefficient are normalized by the retardation factor of the species. The first three 
terms in Table I for each species can be solved without considering other species 
concentrations. However, the reaction equations are location-independent and 
are coupled by other species concentrations at the same location. In other words, 
reaction equations can be solved only by discretizing the time domain. 
 
       Much of the difficulty of modeling reactive transport and biodegradation is 
associated with the representation of the often complicated reaction term, f(c). 
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Discussed below are some of the specific issues associated with solving 
common numerical problems in reactive transport modeling including the 
modeling of reaction kinetics. 
 
Numerical Modeling of Reaction Kinetics 

       The partial differential equations described by eq 1 are coupled by the 
reaction term, f(c). Depending on the type of system being analyzed, various 
mathematical forms of reaction kinetics can be used to describe this term (35, 
33). For example, depending upon the prevailing environmental conditions, 
aerobic biodegradation can be described as (a) no reaction, (b) a first-order 
reaction, (c) an instantaneous reaction, (d) a Monod reaction with constant 
biomass, or (e) a single or dual Monod reaction coupled to biomass growth.   
 
No Reaction 

      Often, it is assumed that subsurface contaminants are stable, i.e., they do not 
interact with subsurface systems or degrade in any way. In such a case, the 
reaction term, f(c), is set to zero, and a single-species transport system is used to 
provide a basis for demonstrating bioremediation. 

 
First-order Reaction 

       The first-order reaction is expressed as the increased amount of a 
contaminant by the decay (degradation) of its parent species and the decreased 
amount by its decay into the daughter species: 
 

1 1− −
∂

= −
∂

i
i i i i

c k c k c
t  

(7) 

 
with the ki canceling for i=1 and i=n. The analytical solution to the system of eq 
7 for batch reactor conditions has been in use for nearly 100 years (42). 
However, numerical solvers are required when transport is involved, especially 
when eq 7 becomes “stiff” (described in further detail below). 

 
Instantaneous Reaction 

       In many instances the parameters that describe the kinetics of biological 
reactions are not available, and the aerobic biodegradation process is 
approximated by an instantaneous reaction (43). The ratio of the amount of 
oxygen consumed to the amount of contaminant destroyed by the reaction is 
usually estimated by an appropriate stoichiometric constant, and the change of 
concentration due to the instantaneous reaction is expressed as: 
 

0 0∆ = = ∀ > ∆ = = ∀ </ , , / , , /c o F o c o F o cF c c o F   
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where c and o are the contaminant and oxygen concentrations and F is the ratio 
of oxygen to contaminant consumed (34). 
 
Reaction with Constant Biomass Concentration 

        The double Michaelis-Menten law (43, 44, 34, 45, 46, 2, 47) is often used 
to describe the kinetics of microbial transformation and nutrient (oxygen) and 
substrate (contaminant) concentrations. If a dual-substrate Monod expression is 
used, assuming the biomass concentration is constant everywhere at any time, 
the nonlinear reaction term can be written for the contaminant and oxygen 
concentrations as: 

 

µ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
,c o

c o

c o
= cf X f

K c K o
F f   

 
where µ is the maximum contaminant utilization rate per unit biomass [T-1]; X is 
the constant biomass concentration [M L-3]; and Kc and Ko are contaminant and 
oxygen half saturation constants [M L-3], respectively. Sometimes, a multiple 
Monod equation is used (48, 37, 47, 49): 
 

1

µ
=

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

∏
n

i
c

i i i

cf X
K c  

 

 
Reaction With Biomass Growth 

       To fully describe the biodegradation processes, microbial growth and 
transport must also be considered. The full coupling of Monod kinetics with 
biomass growth, decay, and attachment/detachment between the liquid and solid 
phases can be expressed as (33): 
 

ρµ
φ

ρµ
φ

φµ
ρ
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= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
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a
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d s
X a r a a a

c o
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X s r s d s
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X c of X f Ff
K c K o

+

+

K Xc of yX K X K X
K c K o

K Xc of yX K X K X
K c K o

 
 

where Xa [M L-3] and Xs [M M-1] are the aqueous phase and solid phase biomass 
concentrations, respectively; y is biomass/substrate yield coefficient [M M-1]; Kr 
is decay rate [T-1]; Ka and Kd are attachment and detachment coefficients [T-1]; ρ 
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is bulk density [M L-3]. Note that biomass is exchanged between aqueous phase 
and solid phase, and the solid phase biomass is often assumed to not be 
transported by either advection or dispersion. 

 
Coupled Stiff Reactions 

Unlike equilibrium reactions, which can be expressed in a generalized 
format of stoichiometric matrices, kinetic reactions vary from linear to nonlinear 
formats and from nonstiff to stiff problems. Often, the formulation of reaction 
kinetics is site-specific, even varying with time and spatial coordinates. When 
kinetics reactions are coupled in the partial differential equations for transport, 
the operator-split strategy is often utilized to develop a general solution scheme. 
Incorporation of detailed kinetic reactions in a transport system can result in a 
“stiffness” of governing equations. As a consequence of this equation stiffness, 
explicit time integration of the reaction source terms is restricted to very small 
time steps. The system is said to be “stiff” when two species have very different 
natural time scales. Environmental and geochemical systems are often stiff when 
equilibrium (fast reactions) and kinetics (slow reactions) are coupled in transport 
equations. However, fully implicit time integration of reaction source/sink terms 
together with implicit time schemes of transport equations requires much larger 
computer memories.  It is unnecessary, or at least inefficient, to use stiff ODE 
(ordinary differential equation) solvers, such as implicit time integration of 
reaction source/sink terms, to solve non-stiff systems. In order to cover a wide 
range of possible reactions (fast or slow, stiff or nonstiff) for groundwater 
biodegradation, it is essential to measure stiffness and select the appropriate 
solvers. An efficient operator split construction is used in RT3D (35) to solve 
the coupled transport equation employing the LSODE/LSODI solver (50) for 
solving the reaction terms. 
 

Kinetics reaction terms in the transport PDEs cannot be explicitly treated 
as source/sink terms. In order to satisfy the stability condition of ODE solutions, 
∆t for the reaction terms must be very small. In other words, each transport time 
step needs to be subdivided into many reaction time steps. However, when the 
ODEs of the reaction terms become stiff, explicit solution schemes will fail. One 
can get the practical feeling about the stiffness from the following first-order 
reactions when k1=106 and k2  =10-3: 

 
1 2

1 2→ →
k k

C C
  

 
The reaction terms are expressed as: 

 

  

UCRL-JRNL-212942



1 2
1 1 1 1 2 2

∂ ∂
= − = − −

∂ ∂
,c ck c k c k c

t t  
 

 
The stability condition requires ∆t < 10-6 while the influence of k2c2 can only be 
seen after 103~109 time steps. In this way, the explicit scheme will cause the 
accumulation of round-off error. Gear (51) developed the first algorithm for 
such stiff ODEs. One can use MATLAB (52) ODE solvers, ode45 and ode45s 
for this problem. 
 

When both equilibria and kinetics are coupled in the transport equations, 
flexible and robust solvers need to be selected for handling the mixed systems of 
differential and algebraic equations. Clement et al. (35) successfully 
implemented LSODE (50) into RT3D to cover a wide range of kinetic reactions. 
However, the current version of RT3D is only limited to kinetic reactions. To 
include both equilibria and kinetics, it is suggested that both LSODE and 
LSODI be implemented. 

 
 

Representative Analytical and Numerical Codes 
Analytical Computer Codes for Biodegradation and Reactive Transport 

Several computer codes have been developed based on analytical solutions 
of reactive transport. This limited review only considers those frequently used in 
the environmental remediation industry. 
 
AT123D 

AT123D (53) is a three-dimensional analytical solution package for 
transport and fate. Processes simulated include advection, dispersion, diffusion, 
adsorption, and biological decay. Contaminant releases can be simulated as 
instantaneous, continuous or varying loads. Source load configurations can be 
established as a point, line, plane, or volume release. 
 
BIOSCREEN 

BIOSCREEN is a screening level transport code that simulates the 
bioremediation and reactive transport of dissolved hydrocarbons or many other 
contaminants. It is based on the Domenico (54) analytical solution of a single 
contaminant transport in three dimensions and can simulate advection, 
dispersion, adsorption (linear equilibrium) and first-order reaction. Groundwater 
flow is assumed uniform with constant velocity. The reaction options coupled in 
the contaminant transport include (1) no reaction, (2) first-order decay, and (3) 
biodegradation based on instantaneous reactions.  
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BIOCHLOR 

BIOCHLOR (55) is a screening code that simulates remediation by natural 
attenuation of dissolved solvents at chlorinated solvent release sites. 
BIOCHLOR can be used to simulate solute transport without decay and solute 
transport with biodegradation modeled as a sequential first-order process within 
one or two different reaction zones. The software, programmed in the Microsoft 
Excel (Microsoft Corporation, Redmond, WA) spreadsheet environment and 
based on the Sun et al. (19) transform and the Domenico (54) analytical solution 
of solute transport model, has the ability to simulate one-dimensional advection, 
three-dimensional dispersion, linear adsorption, and biotransformation via 
reductive dechlorination. Reductive dechlorination is assumed to follow a 
sequential first-order decay process. However, BIOCHLOR is not limited to the 
biodegradation of chlorinated solvents. It can also be used for simulating 
radionuclide transport, denitrification, etc. Case studies can be found in (56). 
 
PLUME2D 

PLUME2D (57) is an analytical code based on closed-form solutions of the 
non-conservative solute transport equation for instantaneous and continuous 
releases of a tracer in one or more source locations as presented by Wilson and 
Miller (58). The program uses superposition of solutions for individual sources 
to calculate the resulting concentration distribution for a tracer in a 
homogeneous, confined aquifer with uniform regional flow. The code evaluates 
the effects of solute advection and dispersion in an aquifer with multiple (up to 
25) fully penetrating sources. It is limited to retardation and first-order decay for 
a single species.  
 
Interactive Models for Groundwater Flow and Solute Transport 

Valocci et al. (59) developed Java code for interactive modeling of flow 
and reactive transport in one, two, and three dimensions. This code covers 
solutions for single species transport. Using any Internet web browser, analytical 
modeling can be conducted remotely using this application. 
 

 
Numerical Computer Codes for Biodegradation and Reactive Transport 

Several numerical computer codes have been developed to model 
biodegradation and reactive transport. The limited review to follow considers 
only those frequently used in the environmental industry. 
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NUFT 

The NUFT code (37) is a numerical suite for modeling multiphase, 
multicomponent reactive transport under non-isothermal conditions. It simulates 
advection, dispersion, reactions (both kinetics and equilibria), thermal 
conduction, and radiation, etc. in multiple overlapped porous and non-porous 
media. It has been successfully used in modeling of bioventing and steam 
injection for groundwater remediation (47) and of hydrothermal behavior at 
nuclear disposal sites. Finite element and finite difference solution options, 
together with internal structured, external nonstructured, and multigrid meshes, 
are available.  
 
TOUGHREACT 

The TOUGHREACT code (40) was developed based on TOUGH2 for 
multiphase and multicomponent reactive transport. A variety of equilibrium 
reactions are covered, such as aqueous complexation, as dissolution/exsolution, 
mineral dissolution/precipitation, and cation exchange. TOUGHREACT has 
been successfully used for modeling hydrothermal and geochemical systems at 
nuclear disposal sites and for CO2 disposal in deep aquifers. 

 
RT3D 

The RT3D code (35) is a MODFLOW family code and was developed 
specifically for modeling bioremediation and reactive transport in a single 
phase. Since LSODE was implemented for solving a wide range of ODEs, it 
solves reactive transport with stiff kinetics.  
 
BIOPLUME 

The BIOPLUME codes (60) were developed for simulating transport of a 
single and multiple hydrocarbons in two dimensions with oxygen-limited and 
reactant-limited bioreactions.  
 

Many other numerical codes for modeling biodegradation and reactive 
transport are reviewed by Wiedemeier et al. (2) and Rifai and Rittaler (1).  
 

 
Analytical and Numerical Solutions, an Example and Comparison 

 
As a demonstration of the differences and similarities of analytical and 

numerical modeling of reactive transport and biodegradation, we illustrate with 
an example that is tractable analytically.  Consider the one-dimensional reactive 
transport system of Sun and Clement (15). A reaction branch of the reaction 
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network ((15), Figure 1) is used here as a sequential reactive transport problem 
as for given reaction rates, k=[k1 k2 … k5]T=[0.05 0.03 0.01 0.005 0.002]T: 
 

1 2 3 4

1 2 3 4 5→ → → →

k k k k
C C C C C

5

→

k  

 
Both analytical (19) and numerical (35) solutions were computed for a column 
of 500 m discretized using 50 evenly spaced nodal points. A uniform 
groundwater transport velocity of 0.5 m/d and dispersion coefficient of 5.0 m2/d 
were assumed. Initial conditions for all species were assumed to be zero.  
The boundary conditions assumed are similar to those used in deriving the basic 
analytical solution (6), 
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Using eq 3 or eq 5, the transformation matrices are obtained: 
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A constant concentration condition (  = 1.0, =0, 1

oc o
ic 1∀ >i ) is set at the 

inlet and a free boundary condition is assumed at the outlet boundary. Note that 
all yield coefficients 1= ∀,iy i  are assumed in this example. Concentration 
profiles are compared in Figure 3 when t=730 d. The CPU time ratio between 
analytical solution and numerical solution is usually very small (in this 5-species 
case the ratio was 0.116 between the analytic solution CPU and the RT3D 
solution CPU).  This specific example illustrates both the faster run time and the 
mathematical transparency of the analytical solution in contrast to the numerical 
solution. 

 
Figure 3.  Concentration profiles of five species after two years. 

 
In addition, since analytical solutions can be expressed in a functional format, 
they can be easily used for system identification (as inverse problems, (12, 61, 
62)), sensitivity analyses (8), and numerical code verification (15, 63, 64). 
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However, numerical solutions are much closer to the real world systems and are 
never limited to the assumptions that are used to derive analytical solutions. 
 
 

Conclusions and Future Considerations 
 

In this chapter, analytical and numerical approaches to modeling reactive 
transport and bioremediation were reviewed, and the tradeoffs and benefits of 
both approaches were discussed. Because of their relative ease of use and speed 
in providing insight into biodegradation processes, analytical solutions play an 
important role in modeling bioremediation and natural attenuation at the 
screening and planning stages.  However, when initial conditions, boundary 
conditions, and/or reaction kinetics require high-resolution, numerical models 
are often the best solution. For high-resolution modeling at late stages, analytical 
models can be used for numerical code verification and conceptual model 
validation. In all cases, numerical and analytical models should be viewed as 
complementary tools, providing the planner and researcher with a dual-
capability of making both rapid and detailed analysis of biodegradation and 
reactive transport systems.  
 

A number of improvements to modeling of reactive transport are possible. 
It has been realized that the lack of the closed form analytical solution of 
sequentially reactive transport with different retardation factors has limited the 
application of analytical codes, such as BIOCHLOR (55). To sufficiently apply 
analytical solutions in real world systems, the conformal transformation is a 
promising direction for converting heterogeneous and anisotropic systems into 
uniform flow systems. Web-based simulation, especially for analytical solutions, 
has great potential. On the numerical side, it would be beneficial to develop a 
model translator, which can convert database information to model input files 
and convert model input files between different computer codes. Users may then 
benefit from the ability to select the most appropriate computer code and adjust 
(or easily update) the model input. 
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