A Modeling Study Evaluating the Thermal-Hydrological Conditions In and Near Waste Emplacement Tunnels At Yucca Mountain

PDF Version Also Available for Download.

Description

In heated tunnels such as those designated for emplacement of radioactive waste at the proposed geologic repository at Yucca Mountain, temperature gradients cause natural convection processes that may significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells in the heated tunnels would provide an effective mechanism for turbulent mixing and axial transport of vapor generated from evaporation of pore water in the nearby formation. As a result, vapor would be transported from the elevated-temperature sections of the tunnels into cool end sections (where no waste is emplaced), would condense there, and subsequently ... continued below

Creation Information

Birkholzer, J.T.; Halecky, N.; Webb, S.W>; Peterson, P.F. & Bodvarsson, G.S. October 11, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In heated tunnels such as those designated for emplacement of radioactive waste at the proposed geologic repository at Yucca Mountain, temperature gradients cause natural convection processes that may significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells in the heated tunnels would provide an effective mechanism for turbulent mixing and axial transport of vapor generated from evaporation of pore water in the nearby formation. As a result, vapor would be transported from the elevated-temperature sections of the tunnels into cool end sections (where no waste is emplaced), would condense there, and subsequently drain into underlying rock units. To study these processes, we have developed a new simulation method that couples existing tools for simulating thermal-hydrological (TH) conditions in the fractured formation with a module that approximates turbulent natural convection in heated emplacement drifts. The new method simultaneously handles (1) the flow and energy transport processes in the fractured rock, (2) the flow and energy transport processes in the cavity, and (3) the heat and mass exchange at the rock-cavity interface. An application is presented studying the future TH conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NA
  • Grant Number: NA
  • Office of Scientific & Technical Information Report Number: 899327
  • Archival Resource Key: ark:/67531/metadc889568

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 11, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 8:22 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Birkholzer, J.T.; Halecky, N.; Webb, S.W>; Peterson, P.F. & Bodvarsson, G.S. A Modeling Study Evaluating the Thermal-Hydrological Conditions In and Near Waste Emplacement Tunnels At Yucca Mountain, article, October 11, 2006; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc889568/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.