CALIBRATION AND TESTING OF A LARGE-AREA FAST-NEUTRON DIRECTIONAL DETECTOR.

PDF Version Also Available for Download.

Description

We have developed a new directional fast-neutron detector based on double proton recoil in two separated planes of plastic scintillators with position-sensitive readout. This method allows the energy spectrum of the neutrons to be measured by a combination of peak amplitude in the first plane and time of flight to the second plane. The planes are made up of 1-m long, 10-cm high paddles with photomultipliers at both ends, so that the location of an event along the paddle can be estimated from the time delay between the optical pulses detected at the two ends. The direction of the scattered ... continued below

Creation Information

VANIER,P.E. May 16, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have developed a new directional fast-neutron detector based on double proton recoil in two separated planes of plastic scintillators with position-sensitive readout. This method allows the energy spectrum of the neutrons to be measured by a combination of peak amplitude in the first plane and time of flight to the second plane. The planes are made up of 1-m long, 10-cm high paddles with photomultipliers at both ends, so that the location of an event along the paddle can be estimated from the time delay between the optical pulses detected at the two ends. The direction of the scattered neutron can be estimated from the locations of two time-correlated events in the two planes, and the energy lost in the first scattering event can be estimated from the pulse amplitude in the first plane. The direction of the incident neutron can then be determined to lie on a cone whose angle is determined by the kinematic equations. The superposition of many such cones generates an image that indicates the presence of a localized source. Setting upper and lower limits on the time of flight allows discrimination between gamma rays, muons and neutrons. Monte Carlo simulations were performed to determine the expected angular resolution and efficiency. These models show that the lower energy limit for useful directional events is about 100 keV, because lower energy neutrons are likely to scatter more than once in the first plane. Placing a shadow bar in front of the detector provides an alternative way to obtain the direction to a point source, which may require fewer events. This method also can provide dual capability as a directional gamma detector.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--77998-2007-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 909968
  • Archival Resource Key: ark:/67531/metadc889488

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 16, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

VANIER,P.E. CALIBRATION AND TESTING OF A LARGE-AREA FAST-NEUTRON DIRECTIONAL DETECTOR., article, May 16, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc889488/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.